
166

To Reuse or Not To Reuse? A Framework and System for
Evaluating Summarized Knowledge

MICHAEL XIEYANG LIU, Human-Computer Interaction Institute, Carnegie Mellon University, USA
ANIKET KITTUR, Human-Computer Interaction Institute, Carnegie Mellon University, USA
BRAD A. MYERS, Human-Computer Interaction Institute, Carnegie Mellon University, USA

As the amount of information online continues to grow, a correspondingly important opportunity is for
individuals to reuse knowledge which has been summarized by others rather than starting from scratch.
However, appropriate reuse requires judging the relevance, trustworthiness, and thoroughness of others’
knowledge in relation to an individual’s goals and context. In this work, we explore augmenting judgements
of the appropriateness of reusing knowledge in the domain of programming, specically of reusing artifacts
that result from other developers’ searching and decision making. Through an analysis of prior research on
sensemaking and trust, along with new interviews with developers, we synthesized a framework for reuse
judgements. The interviews also validated that developers express a desire for help with judging whether to
reuse an existing decision. From this framework, we developed a set of techniques for capturing the initial
decision maker’s behavior and visualizing signals calculated based on the behavior, to facilitate subsequent
consumers’ reuse decisions, instantiated in a prototype system called Strata. Results of a user study suggest
that the system signicantly improves the accuracy, depth, and speed of reusing decisions. These results have
implications for systems involving user-generated content in which other users need to evaluate the relevance
and trustworthiness of that content.

CCS Concepts: • Information systems → Decision support systems; • Software and its engineering
→ Software design tradeos; • Human-centered computing → Graphical user interfaces.

Additional Key Words and Phrases: Knowledge Reuse; Decision Making; Developer Tools; Sensemaking

ACM Reference Format:
Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not To Reuse? A Framework and
System for Evaluating Summarized Knowledge. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 166
(April 2021), 35 pages. https://doi.org/10.1145/3449240

1 INTRODUCTION
Information and knowledge reuse has become a highly consistent paradigm across a wide range of
elds and disciplines to advance their respective frontiers, such as reusing previous engineering
best practices on future generations of products [20, 21], taking advantage of schemas and results
from previous sensemaking episodes to create new representations and understandings of the
world [41, 63, 92, 100], and plugging in previously written and well-maintained design patterns
and code snippets to build novel software features and functionalities [3, 11, 46, 47, 69]. Reusing
proven information and knowledge promises the benets of potentially reduced workload and

Authors’ addresses: Michael Xieyang Liu, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh,
PA, USA, xieyangl@cs.cmu.edu; Aniket Kittur, Human-Computer Interaction Institute, Carnegie Mellon University, Pitts-
burgh, PA, USA, nkittur@cs.cmu.edu; Brad A. Myers, Human-Computer Interaction Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, bam@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for prot or commercial advantage and that copies bear this notice and
the full citation on the rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2573-0142/2021/4-ART166
https://doi.org/10.1145/3449240

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
2573-0142/2021/4-ART166. https://doi.org/10.1145/3449240

https://doi.org/10.1145/3449240
https://doi.org/10.1145/3449240
https://creativecommons.org/licenses/by/4.0/

166:2 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

b

c

d

a a1

b2 b3

b5

b4

c2

c3

c4

b1

c1

e options

f criteria

g evidence rating snippets

g1

g2

g3

g4

Fig. 1. Strata’s user interface. Strata helps developers evaluate three main facets of appropriateness of reusing
a Unakite comparison table with options (e), criteria (f), and evidence (g) through three overview panels: (a) the
Context panel, the Trustworthiness panel, and the Thoroughness panel. Each panel contains the groups (such
as (b), (c), (d)) of appropriateness properties to directly address developers’ information needs. Developers
will also be alerted of any potential issues with respect to each facet (e.g., b2, c3, c4).

development cycles [20, 69], improved quality and performance [47, 50, 125], and more time for
creation and innovation [59, 84, 85, 125].
There have been various commercial and research information gathering and sensemaking

systems that help people with creating reusable knowledge by helping with capturing [16, 23,
73], organizing [29, 51, 52], disseminating [32, 76, 102], and understanding [29, 62, 91, 92, 100]
information. One that is relevant to the context of programming, our Unakite system [83], enables
developers to collect and organize information online into comparison tables with options, criteria,
and evidence to help with making decisions (see Figure 1-e,f,g). Systems like these often support
keeping track of information for sharing with others later [27, 52, 83, 92, 100]. For example, Unakite
might present a comparison table authored by an initial developer (who we call the author) to help
subsequent developers (who we call the consumers or readers) pick an API to represent matrices in
Python (as in Figure 1 and Figure 2), or to choose the best JavaScript framework to build a website.
Unakite is designed to help consumers reuse the decisions and trade-os identied by the author
[49, 57, 72, 83, 103] instead of spending the time to discover them from scratch.

However, a major challenge to such a knowledge artifact actually being suitable for reuse is that
the consumers do not know if it is appropriate to use it or not [85, 125]. Prior research suggested
that when checking if a piece of online information can be reused or not, people primarily focus
on verifying its correctness, and often use credibility as a surrogate for correctness because it is
easier to check and is highly correlated with correctness [55]. For example, signals that can be
leveraged to judge credibility include whether the information came from credible sources, whether
the way it was presented looked credible, and what the author’s qualications and credentials
were [44, 87, 108, 124]. In addition, the correctness of information can not always be measured
objectively, but rather often depends on the situation [42]; for example, a statement that a sorting

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:3

algorithm is “fast” may depend on the size of the data it is applied to. Furthermore, the knowledge
artifacts shown by previous systems are usually a collection and synthesis of dierent individual
pieces of information from dierent sources. They often capture the author’s opinion about whether
a decision should be made in one way or another, and there is not likely to be a single correct
answer but multiple valid options with trade-os [83]. Unlike general web pages and their content,
such knowledge artifacts require many more types of judgements in addition to credibility for
someone to decide whether it is appropriate to reuse them or not, including whether the goal and
context of the author matches that of the consumer’s [55, 85], how thorough was the author’s
research [37, 100], etc.

Another challenge identied in sensemaking research is that, in reality, consumers often opt to
start from scratch rather than reusing previous users’ work because of the high costs associated
with 1) systematically identifying all of the potential aspects of the work to verify, and 2) obtaining
access to properties that could help with the verication [41, 79, 80, 87]. For example, when checking
the thoroughness of an author’s research, the list of search queries used, the web pages visited,
the pages that the author spent the most time reading, and the potential alternatives that were
overlooked can all be valid properties to help with the assessment, but are currently not kept track
of (even by systems such as Unakite) and hence are not available to the consumer.

In this work, we explore these challenges in the context of reusing the comparison tables created
using the Unakite system, where the consumer developer needs to evaluate the appropriateness of
reusing the table authored by the initial developer. We perform our research through a user-centered
design approach. From the vast body of prior work discussing frameworks and measurements for
issues of trust and reuse, we extracted properties of importance to developers. We then conducted
formative needs-nding interviews with developers about their information needs when evaluating
appropriateness. We then synthesized all this information together, resulting in the three key facets
of the author’s context, and the trustworthiness and thoroughness of the resulting knowledge artifacts,
each with a collection of the consumers’ specic information needs, which are summarized in
a framework in Table 1. We then devised various key signals and properties that can be used to
address those needs as well as mechanisms to automatically identify, compute or keep track of
them as an author collects information, which are summarized in the last column of Table 1. Then,
we iteratively designed a hierarchical presentation of the information that lets consumers view
and explore those signals and properties interactively, by augmenting the original Unakite tables.
These were implemented in a prototype system called Strata1, which consists of a browser plugin
for Google Chrome and a web application (see Figure 1). Finally, we conducted a user study to
evaluate Strata’s eectiveness.

The primary contributions described in this paper include:

• a formative study showing developers’ needs for support with reusing previously-generated
knowledge,

• a synthesized framework (Table 1) for augmenting judgements of appropriate reuse includ-
ing three major facets: context, trustworthiness, and thoroughness,

• a prototype system called Strata that automatically records, computes, and visualizes many
of the appropriateness signals described in the framework,

• an evaluation of the prototype system that oers insights into its usability, usefulness, and
eectiveness.

1Strata is named after a series of layers of rock that shows the history of a geographical location. It stands for “Sidebar
Towards Reuse and to Assess Trustworthiness and Applicability”.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:4 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

Facet Information
Need

Selected References
in Prior Research

Sample Quotes in
Formative Study

Selected Supporting Features
in Strata

C
on

te
xt

Goals of the
original decision

• Search queries are useful for encod-
ing task goals & contexts in various
settings like asynchronous collabo-
rations [23, 92, 100, 101, 111, 126].

• “This looks like it’s trying to pick
a speech recognition API, but what I
want is actually text to speech.”

• Keeping track of the author’s
search queries to reect his or her
task goal.

Explanation or
contextualization
of
information

• Recontextualization of information
helps with understanding [83, 85].
•Clarity and informativeness of web-
site content improves understanding
[43, 118].

• “What does this ‘very ecient’
mean, is it ‘memory’ or ‘time’ e-
cient?”
• “Is it [a sorting algorithm] ‘fast’
only when there’re a few hundred data
points or also when there are millions
of data points?”

• Keeping track of the surroundings
along with the information snippets
and presenting them as contextual
explanations.

Situational
awareness

• Awareness of common ground fa-
cilitates sensemaking hando [33,
109, 111].
• Users need awareness of each oth-
ers’ actions in order to perform their
tasks better [17, 92, 93, 100].

• “I want to solve it with pure
JavaScript, but it seems that most of
the answers here are actually written
using jQuery?”
• “I’m using Python 2.7 at the moment,
which is fairly old, does this example
also use this version?”

• Detecting information about lan-
guages, frameworks, and their ver-
sions mentioned in information snip-
pets with a predened yet easily ex-
tensible list of detectors.

T
ru

st
w
or
th
in
es
s

Source credibility
and diversity

• Source credibility aects trustwor-
thiness of information [35, 39, 43, 87,
118].
• Sources similar to what a consumer
usually uses are more likely to be
deemed credible [89, 108].

• “If it’s from Stack Overow, I’m usu-
ally ne with it. But if it’s from some
random blog posts written by some
random guy, I would think twice.”
• “I wonder if all of these just came
from the ocial documentation or
there’re also other developer forums.”

• Visualizing the distribution of in-
formation snippets across dierent
domains (websites).
•Alerting consumers of potential un-
trusted domains.

Information
up-to-dateness

• Information currency aects its
perceived credibility [15, 26, 87].

• “Is this speed comparison [between
React, Angular, and Vue] up-to-date
now that Angular 9 was just re-
leased?”

• Extracting and surfacing the last
updated time of information snip-
pets.

Information
popularity

• People apply the endorsement
heuristic to evaluate credibility [87].
• People seek social proof when eval-
uating credibility [108].

• “If there’re a lot of other devs [who]
also think this is a good idea, then I’m
much more comfortable to use it.”

• Extracting and surfacing sig-
nals showing information popular-
ity, such as the up-vote count of an
answer on Stack Overow.

Information
consistency

• People apply the consistency heuris-
tic to evaluate credibility [87].
• People seek more than one source
to verify information [86].

• “It claims PyTorch is much easier to
learn than Tensorow, but I wonder if
there’re people suggesting otherwise.”

•Alerting consumers if there are con-
icting (both positive and negative)
ratings in any of the table cells.

Author credibility • The author’s level of expertise
aects information trustworthiness
[35, 65, 108].
• Disclosing patterns of past perfor-
mance helps people evaluate trust-
worthiness [65, 113, 116].

• “Does the table author know what
he’s doing?”
• “Is the author saying all the nice
things about Cae because he has lots
of experience with it or because he’s
biased?”

• Surfacing credibility and bias sig-
nals from the table author’s Github
prole, such as their primary pro-
gramming language, number of stars
on their repositories, and aliation.

T
ho

ro
ug

hn
es
s

Research process
and eort

• External representations handed
o should indicate prior investiga-
tive process and insights [100, 101,
131], howmuchwork had been done,
and how mature the representation
was [109, 111].

• “How much eort was put into mak-
ing this decision?”
• “What did the author focus on?”

• Keeping track of and visualizing
the author’s activities on an interac-
tive timeline view, including search
queries, pages visited, duration of
stay on the pages, information snip-
pets collected, etc.

Alternatives or
competitors

• Knowledge and sensemaking re-
sults should indicate their coverage
and scope [35, 87].

• “I heard anecdotally that Svelte gives
you much better performance than
all these big (JavaScript) frameworks
[React, Angular, and Vue]. I should
take a look at that before I decide.”

• Finding and surfacing commonly
searched-for alternatives mentioned
in Google autocomplete suggestions.

Usable artifacts • Developers need help nding and
reusing code examples [27, 97, 102].

• “Which option was chosen in the
end?”
• “[Are there] any code snippets that I
can immediately plug into mine and
test?”

• Extracting and surfacing code ex-
amples from information snippets.

Table 1. A framework summarizing the three major facets (column 1) when evaluating the appropriateness
to reuse knowledge, including people’s specific information needs (column 2), selected evidence from prior
work (column 3), sample quotes from our formative study interviews (column 4), and features we devised to
support the information needs in the subsequent Strata system (column 5).

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:5

2 RELATEDWORK
2.1 Information and Knowledge Reuse
As formulated by Davenport et al. in 1996 [34] and Markus in 2001[85], knowledge processes are
often categorized by whether they involve knowledge creation (e.g., research and development
of new products and services, or writing books or articles) or knowledge reuse (e.g., reapplying
existing components and best practices to solve common problems). While there is much research
into the signicance and diculties of knowledge creation and innovation [34, 51, 53, 63, 68, 95],
the eective reuse of knowledge has been shown to be a more frequent strategy and concern to
individuals and organizations [34, 36, 85, 96, 98, 129, 130].
Many systems have been developed to support the multiple stages of information and knowl-

edge reuse as mapped out by Markus [85]: capturing and documenting knowledge, packaging and
distributing knowledge, and reusing knowledge. Among them, some systems support capturing,
organizing, and keeping track of information in the rst place (e.g., [23, 52, 77, 78, 83, 120]), some
aim to deliver and surface existing knowledge directly to a user without the need of complex
matching and frequent context switches (e.g., [27, 30, 102]), and others facilitate the digesting
and understanding of knowledge (e.g., [80, 83, 116]). However, having a literal understanding of
a knowledge artifact does not by itself imply reuse — a major barrier to that knowledge actually
being useful is the consumer does not know whether it is appropriate to use it or not [85, 125].

Prior research provides insights into various properties that people look for in order to evaluate
the appropriateness for reuse, such as source credibility [35, 39, 43, 87, 108, 118], information
currency (or up-to-dateness) [15, 26, 87], information popularity [87, 108], goals and purposes
(what the author wanted to achieve) [101, 111], etc. However, much research such as the above
focuses on specic issues about the general credibility of web content, while knowledge artifacts
previously collected and synthesized by an author require many more types of judgements beyond
credibility in order for a consumer to decide its appropriateness for reuse. To the best of our
knowledge, there remains no systematic models or frameworks for understanding the factors that
aect the judgements of the reuse of previously created knowledge artifacts. Such a framework
could be helpful for driving research studying and augmenting reuse across a variety of domains
and forms. Here we take a step towards such a framework, starting with knowledge artifacts in
the form of comparison tables, which are widely used, and in the domain of programming, where
knowledge reuse happens frequently [27, 50, 54, 57, 67, 70, 83, 102, 115, 115]. In the following
sections, we discuss three of the most relevant threads of research as they relate to judgements of
knowledge reuse.

2.2 Evaluating Online Information Credibility
2.2.1 Models and Heuristics for Evaluating Online Information Credibility. One of the most re-
searched facets of knowledge reuse is evaluating online information credibility [44, 87, 108, 124]
(or “trustworthiness” [118]), which focuses on facets of authenticity, reliability, and trustworthiness
of a given piece of content online, ranging from e-commerce transactions to online discussions
and collaborations [65, 116, 117]. Prior work has employed bottom-up approaches like surveys and
contextual inquiries and reported various factors that inuence credibility assessment, including
but not limited to: domain name and URL, presence of date stamp showing information is current,
author identication and indication of his or her expertise, citations to scientic data or references,
and user ratings and reviews [15, 26, 39, 43, 48, 86, 87, 89, 113, 118, 124].

In addition, models and heuristics for credibility assessment have also been proposed, for example,
the checklist model, which guides users through a checklist of critical factors during assessment [87],
and the contextual model, which emphasizes the use of external information to establish credibility

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:6 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

[86], such as promoting peer-reviewed resources and seeking corroborating or conicting evidence.
A summary by Metzger et al. [89] suggests that users routinely invoke cognitive heuristics to
evaluate the credibility of information and sources online, such as the reputation heuristic (checking
if the source of the information has good reputation and credentials), and the expectancy violation
heuristic (checking if a website or its content conforms to their original expectations).

However, in reality, it has repeatedly been shown that people are often underprepared and have
trouble determining how to evaluate the credibility of online information [18, 86, 88, 106], which
is often deemed to be too much work [86, 109], having a high possibility of missing important
details [87, 89], and eventually leading to abandonment, mistrust or misuse [79, 80, 87] of the
information. This reects a signicant gap between research and reality: while prior work provides
insights into the various factors aecting online information credibility and ways people reason
about them, people need tool support that systematically helps with credibility assessment and
information reuse. We address this gap by providing a prototype system that (1) automatically
extracts appropriateness signals (including those related to credibility) from the original knowledge
content when possible; and (2) processes and presents them to the consumer of the knowledge in a
hierarchical visualization that directly addresses their information needs during the evaluation of
the appropriateness to reuse.

2.2.2 Interventions and Support for Evaluating Collaboratively-built Knowledge Content. Collab-
orative knowledge building, exemplied by the Wikipedia project [6] and Stack Overow [5],
has become highly popular in many domains, and its mutable nature that virtually anyone can
edit anything has invited considerable research into helping users evaluate the trustworthiness
of its content. For example, the revision histories [116, 122, 127, 128], review processes [123],
and the external references [44, 45] of an article can be modeled and visualized to help improve
transparency and the evaluation of its trustworthiness. In addition, an author’s past performance,
such as their editing history on Wikipedia or previously answered questions on Stack Overow,
can be mined [14, 113] and surfaced [116] to help knowledge consumers determine the author’s
reputation, expertise, and other accountability metrics. Encouragingly, Kittur et al. [65] showed
that surfacing trust-relevant information from Wikipedia articles had a dramatic impact on users’
perceived trustworthiness of those articles, holding constant the content itself.

However, despite the overwhelming importance and increasing research eort, being considered
trustworthy is often not the sucient condition for reuse, nor is trustworthiness always the rst
facet that users evaluate — research has shown that people often have trouble understanding a
piece of information when it is taken out of its original context [83, 85] and guring out if it is
indeed relevant to their own situation [25, 105, 109] before they start to think about trustworthiness
and credibility. In addition, they also wonder about how much eort has been put into creating a
piece of knowledge and does it cover everything that they are interested in [85, 100, 109, 111, 131]
before they can give a nal verdict on reusing it or not. Therefore, we draw from and build upon
these prior works, where we iterated to identify, extract, and surface not only the important
elements of trustworthiness but also context and thoroughness to help consumers make a more
comprehensive assessment of the appropriateness of reusing knowledge, exemplied by decisions
and their rationale in programming.

2.3 Sensemaking Hando
Much research has explored the activity of sensemaking hando, during which one individual must
continue the sensemaking work where another has left o. It frequently happens in asynchronous
collaborations [41, 100, 101, 131], shift changes [99], etc., during which the current sensemaker
(consumer) needs to make sense of and evaluate the appropriateness of reusing the results generated

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:7

Collect a snippet by selecting the desired content

Collect a snippet by drawing a bounding box around
the desired content.a2

Snippet cards

Snippet repository

Drop the snippet as a
piece of positive
evidence

Drop the snippet as
a piece of negative
evidence

Drop the snippet as a
piece of informational
evidence

Comparison table

a1
b

eWebpage Unakite sidebar

d

c

f1

f2

f3

a

Fig. 2. Unakite’s user interfaces. With Unakite, a developer collects a snippet by selecting the desired content
(a1) or by drawing a bounding box around the desired content (while holding the Option / Alt key) (a2) and
clicking the “Save to U” buon. The collected snippet will show up under the “Uncategorized” tab in the
snippet repository (c) as a snippet card (d) inside the Unakite sidebar (e), which shows the current task at the
top (“how to represent matrices in numpy”). The developer can drag the snippet and drop it in one of the
cells in the comparison table near the top (b), and mark whether it is positive (green thumbs-up) or negative
(red thumbs-down) or just informational (yellow “i”). (f1-f3) show the details of the three parts of each cell in
the table where the snippet can be dropped. For full details, see [83].

by a previous sensemaker (author) [85, 109]. Various metadata and properties parallel to the main
artifacts of sensemaking have been proposed that would help the people with this process, such as
the awareness of the previous sensemaking process [37, 100] (e.g., search queries and visited web
pages), the level of expertise of the author [85, 111], and the context of the original sensemaking
problem [85].
However, it is both time and eort intensive for an author to keep track of their rationale and

processes with little immediate payo, which is also often for the benet of others rather than
themselves [83]. Even in situations where authors have the explicit wish to help, they are often
uncertain of what metadata and properties to provide and how those can be instantiated using
concrete signals that would be valuable to the consumers in evaluating the reusability of their
sensemaking results [109]. We address these barriers in the context of reusing decisions in pro-
gramming by iteratively developing a framework that summarizes the major facets that consumers
care about during the evaluation of appropriateness to reuse along with the corresponding detailed
information signals, and a set of technical approaches that can automatically extract, compute,
and visualize them when possible. We integrated these into our Unakite system [83] that helps
authors organize and record their decisions for reuse, saving them the burden of coming up with
the appropriate signals to keep track of as well as potential extra eort needed to accurately obtain
them.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:8 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

2.4 Knowledge Reuse in Programming
The practice of knowledge reuse has been particularly relevant in the software industry [50]. Code
reuse, in particular, has become a hugely successful paradigm in the development of new software
products and services in both the commercial and open source sector. Developers frequently usewell-
maintained functional code modules from code-sharing platforms such as GitHub [1] and npm [3],
enjoying the benets of signicantly reduced workload, improved productivity, enhanced software
performance, stability and security, and more time for innovation [46, 47, 50, 60, 85, 90, 94, 115].

Despite the fact that software code is the most obvious target for reuse [50, 90, 115], knowledge
reuse in programming may go well beyond code, as stated by Barns and Bollinger [19]: “The
dening characteristic of good reuse is not the reuse of software per se, but the reuse of human
problem-solving.” Indeed, developers on community Q&A websites like Stack Overow [5] share
not only code examples [27, 102] but also decision making strategies, design rationale such as
alternative options, criteria or constraints that should be met, and the resulting trade-os [57, 83].
Furthermore, questions about design rationale are widely cited by developers as some of the hardest
to answer [70, 71, 114]. Tools like Unakite [83] can greatly reduce the costs to keep track of and
later understand such rationale knowledge, with the hope that such knowledge can ultimately be
better reused rather than be obtained from scratch requiring duplicated research eort [50, 81]. In
the current work, we further advance this research thread by developing features and aordances
enabling developers to evaluate the context, trustworthiness, and thoroughness of previously-made
decisions, which is arguably one of the missing links between understanding and reuse.

3 BACKGROUND AND FORMATIVE INVESTIGATIONS
In this work, we explore augmenting knowledge reuse judgements in the context of programming,
specically in using the Unakite [82, 83] system. We rst explain the design and usage of Unakite to
provide a background for our research, and then describe a formative study investigating developers’
issues and information needs for knowledge reuse when using Unakite.

3.1 The Unakite System
Asmentioned, Unakite addresses both the need of initial developers to synthesize online information
and recognize the trade-os in programming decisions and the need of subsequent developers
to be able to understand the rationale behind those decisions. Unakite, as a Chrome extension,
enables the initial developers to easily collect any content from any web page as snippets (pieces of
information, Figure 2-d) into the snippet repository (Figure 2-c) by either selecting or dragging out a
bounding box around the desired content using the cursor (Figure 2-a1,2). To help with organization,
developers can use drag-and-drop to move their collected snippets into a comparison table (Figure
2-b) with options (as row headers), criteria (as column headers), and evidence (“thumbs-up” or
positive, “thumbs-down” or negative, and “informational” (“i”) ratings that spread across the rest of
the table cells) that illustrates the trade-os among various solutions. All the interaction techniques
involved are designed to be natural and lightweight without taxing users with much cognitive
load [63, 64] while they are searching and exploring for potential solutions to their programming
problems.

The resulting organizational structure is automatically saved by the system and can be accessed
through a web application (with the snippet repository on the left and the comparison table on
the right) with a unique URL, which can be used as stand-alone documentation of the design
rationale or be integrated with code through comments. As opposed to having to speculate about
the correctness and legitimacy of a decision [66], subsequent developers who have access to these
comparison tables will be able to understand the context of the decision space: what options

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:9

and alternatives were considered, what criteria or constraints should be met, what the resulting
trade-os were, and what was deemed to be the most important and why.

Although Unakite has been shown through lab studies [83] to help the initial developer in making
a programming decision, it displays few of the signals suggested by the research discussed above
on trust and sensemaking hando that could help consumers of the table decide whether it is
appropriate for them to reuse it. For example, the initial table creator may or may not have been
thorough in their research; may or may not have the same context and environment; or may or
may not care about the same goals as the consumer. Although we use Unakite as a specic context,
there are many similar examples of developers creating comparison tables in code documentation,
blogs, and Stack Overow [7, 8], which are typically even sparser in terms of signals for reuse
appropriateness, with no supporting interactivity or drill-downs possible.

3.2 Formative Interviews
To characterize the prevalence and types of issues developers have with knowledge reuse, specif-
ically with reuse of programming decisions, we conducted semi-structured interviews with 15
developers (5 female, 10 male). Participants were recruited through mailing lists, social media
postings, and word-of-mouth. To capture a variety of processes, we chose 8 professional developers,
3 doctoral students, and 4 master students. While we do not claim that this sample is representa-
tive of all developers, the interviews informed and motivated the development of the subsequent
framework (Table 1) and the design of the Strata system.
We began by asking participants about their experiences in reusing someone else’s decisions

when programming and how frequently would that situation occur in their work. We then explored
how they manage these situations and their information needs, in particular, what questions do they
have when evaluating the appropriateness to reuse and how answers to those questions may aect
their nal verdicts on reusability. In addition to eliciting facts on their past experiences, we also
presented them with a set of decision tables in the running Unakite application (which were directly
adapted from real tables online, e.g., [107]) as well as the corresponding background situational
context, and asked them to judge if they could reuse these tables in those given situations. We
asked them to speak about any questions they had and perform any inquiry they wanted to answer
those questions (e.g., checking the sources, searching for evidence online, etc.). Finally, we wrapped
up with questions probing their experience with explaining their design rationale to others, and
whether and how do they convince others that their decisions are appropriate to be reused.

Interviews were conducted either in person or remotely by the rst author and lasted 30 minutes.
They were audio-recorded and then transcribed. In addition, screenshots of participants’ computers
were taken for later analysis when applicable. Then, the rst author went through the transcriptions
and coded them via an open coding approach [31], which included multiple iterations of discussions
with the research team. Our key ndings are presented below.

3.3 Preliminary Results
3.3.1 Decision reuse is frequent in programming. All participants were able to recall and describe
experiences of evaluating and reusing someone else’s decisions. One of the scenarios where reuse
frequently happens is during code refactoring, makeovers, and takeovers, where developers are
required to re-evaluate decisions made by some other developers or teams for reusability. For
example, P8, a professional full-stack developer, said: “just last month we were taking over another
team’s project, and the rst thing we did was to re-evaluate if it still makes sense to continue building
with Ruby on Rails, or it’s time to do a whole re-write with React or Angular.” Another frequent
reuse scenario is during project startups, where developers actively look for existing decisions
on choosing architecture, frameworks, libraries, algorithms, and APIs to reuse, such as “picking

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:10 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

the right cryptographic algorithm to encrypt passwords” (P12) and “choosing the best optimization
method to train neural networks” (P6).

3.3.2 Developers need guidance and tool support when evaluating whether to reuse someone else’s
decision. Although decision reuse happens frequently, participants’ strategies to evaluate the
appropriateness of reuse were not without troubles. 10 out of 15 said that they usually have some
ideas of what types of evidence to look out for, such as the credibility of the sources, code examples,
and library version mismatches, etc., but were not condent that those were sucient. For example,
P5 said: “I feel the obligation to do more validations other than conrming they [performance metrics
for dierent deep learning frameworks] are from ocial docs, but I’m not sure what else to look at
or where I can nd extra information.” In addition, participants reported often having to manually
look for evidence of reusability (7/15), such as following the URLs previous developers left in
code comments to the original web pages to validate information correctness, and pinging and
asking the original author about what alternatives were considered back then. However, sometimes
the sources of evidence were not possible to nd since none of the sensemaking processes were
consciously kept track of during the original author’s decision making process other than the result.

4 FRAMEWORK
Data from the formative study suggested that developers would benet from support in evaluating
the appropriateness of reusing decisions. For example, there are many indicators that could be
benecial to surface to help users make these judgements, ranging from the expertise of the
author to the quantity and legitimacy of the sources used. Although there has been little prior
work characterizing the most important factors for decision reuse specically by developers, as
listed above there has been signicant work discussing frameworks and measurements relevant
to evaluating and reusing knowledge, such as online information credibility judgement [86–89],
asynchronous collaboration [92, 101], and sensemaking hando [41, 109–111]. From these research
papers, we extracted properties and signals that would be important and relevant to decision reuse
for developers.
By coding and synthesizing the aforementioned prior work as well as the formative study

results through anity diagramming, we identied three major clusters, that we call facets, when
evaluating the appropriateness for reuse in programming: the original author’s decision making
context, and the trustworthiness and thoroughness of the resulting decision. We used these as a guide
in developing an integrated framework, shown in Table 1, consisting of the three identied facets
(column 1), specic information needs of developers with regard to each facet (column 2), selected
evidence for the importance of these information needs as well as possible solutions to address
them from prior work (column 3), and sample quotes from our formative interviews (column 4).
These insights together inspired the features for our subsequent Strata system (column 5). We now
discuss the framework in detail, along with the support from the prior work and the formative
interviews. The design of Strata follows in section 5.

4.1 Context
Although in prior work the importance of understanding the trustworthiness of information often
outshines everything else when evaluating the appropriateness to reuse [65, 85], we were surprised
to nd out that, at least in the domain of programming decision reuse, developers often ask questions
about the context of a previously-made decision before they proceed to assess trustworthiness
(9/15). Cited reasons include that one needs to know “how relevant it is to what I am doing” (P5) rst,
and if the context of the original decision does not align very well with the problem at hand, one

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:11

would often stop the evaluation process and move on to look for new solutions. For example, if a
developer is working in Java, solutions that only work in JavaScript may not be worth investigating.

4.1.1 Goals of the original decision. When evaluating context, most (12/15) participants asked
questions about the goals and purposes of the author of the decision in order to compare those with
their own. For example, “this looks like it’s trying to pick a speech recognition API, but what I want
is actually text to speech,” (P14) and “people say they want to do one thing, but after taking a closer
look, they really are doing this other thing, which often makes me a tad frustrated” (P7). Indeed, prior
research suggests that the goals of decisions are often treated as “self-evident” given the results,
and therefore are often not kept track of by the authors [70, 71]. On the other hand, goal mismatch
does not always prevent developers from further evaluating a decision; instead, it can become a
“learning opportunity” for them to “know more about a new technology or design pattern” (P11).

Furthermore, when asked about their experience of making decisions, participants reported that
their goals may very well evolve with their exploration process rather than remaining xed from
the beginning (7/15). For example, “I started out trying to choose a framework to build a mobile app
for both Android and iOS, but later I stumbled upon this progressive web app thing that totally fullls
all of my requirements, so I ended up trying to learn more about that, and sort of abandoned the mobile
app route that I was originally planning to take” (P3). This motivated us to develop features (e.g.,
keeping track of all of the search queries used) to capture not only an author’s original goal but
also the evolving nature of that goal, so that later knowledge consumers could have a better grasp
of how the author’s goal changed throughout a decision making process.

4.1.2 Explanation or contextualization of information. One of the frustrations that participants
reported having is that they often have trouble understanding the meaning of some of the criteria
and evidence used in online decision tables (8/15). For example, “what does this ‘very ecient’ mean,
is it ‘memory’ or ‘time’ ecient?” (P10). In some other circumstances, they suspect that evidence
may not hold true when external constraints or requirements change: “is it [a sorting algorithm]
‘fast’ only when there’re a few hundred data points or also when there are millions of data points”
(P1). Indeed, prior work suggests that clarity and informativeness of information have a signicant
impact on how well it is understood [43, 118], and presenting information along with its original
context (recontextualization) is considered a good way to help people understand its meaning and
the conditions in which it is correct or accurate [42, 83, 85].
In addition, it was also suggested by participants that it is not always easy to recontextualize

information, especially when the context is not available (6/15). Unakite partially addressed this
by allowing users to create a snippet out of a large block of information in its original HTML
format as well as automatically recording the corresponding source URL for later retracing [83]. In
Strata, we build on that by introducing the concept of a context snapshot, which, at capture time,
automatically keeps track of the surroundings of an information snippet in addition to the snippet
content itself and its source URL. When consumers are reviewing a snippet, they will be able to
benet from the possible explanations such as code examples and performance metrics contained
in the surroundings that would otherwise be missing from the snippet content.

4.1.3 Situational awareness. An essential part of context is the situation in which the information
will be reused. In programming, this corresponds to the languages, libraries, and platforms being
used, which are often referred to as dependencies, and participants reported checking if a given
decision shares the same language or library usage as to what they have to work with (8/15). For
example, P7 asked “I want to solve it with pure JavaScript, but it seems that most of the answers here are
actually written using jQuery.” Furthermore, version mismatch has been a frequent issue for reuse
in programming. With the continuous rise of the open source software development model [50]

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:12 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

and the increasing number of frameworks, libraries, languages, and patterns [2, 4, 9], version and
dependency mismatches and errors can cause troubles from missing features to breaking dependent
downstream applications [10]. Indeed, participants reported checking for versions before they
commit to adopting a certain solution (6/15). For example, “I’m using Python 2.7 at the moment,
which is fairly old; does this example also use this version, or is it using Python 3.5?” These inspired
us to try to automatically detect the language, library, platform, and version information whenever
possible when an author collects information online, and surface this to the consumer to directly
address their information needs.

4.2 Trustworthiness
As mentioned, information trustworthiness or credibility is often used as a surrogate for verifying
information correctness [55], and is one of the most reported and researched facets during the
evaluation of the appropriateness to reuse knowledge across many domains [85, 87]. Our interview
data shows that it plays a crucial role in the domain of reusing decisions in programming as well.

4.2.1 Source credibility and diversity. As suggested by prior work, source credibility has a signicant
impact on the trustworthiness of information [35, 39, 43, 87, 118]. Not surprisingly, all participants
in our study reported this same belief — they are more inclined towards trusting information
from sources that are ocial (e.g., API documentation websites) or with a very good reputation
within the community (e.g., Stack Overow), and are more likely to reject information from sources
that they have little experience with, echoing the reputation heuristic and the expectancy violation
heuristic [89, 108] that people generally use to assess trustworthiness. For example, P12 said: “if it’s
from Stack Overow, I’m usually ne with it. But if it’s from some random blog posts written by some
random guy, I would probably think twice.”
It is worth noting that in addition to credibility, source diversity also plays a role in trustwor-

thiness, according to 7 of the 15 participants. They thought that the more diverse the sources
used are, the more likely that the evidence in the table has been “peer reviewed” or “conrmed
by a bunch of other devs”, and “seeing essentially the same thing independently said on a couple of
dierent sites and forums” gives them “peace of mind”. We believe that source diversity also works
in concert with information popularity and consistency, which we will discuss in detail in the
upcoming sections. This motivated us to provide source domain information as a direct signal for
each of the information snippets collected as well as a visualization of how all the collected snippets
are distributed across the dierent domains, enabling users to easily assess source credibility and
diversity.

4.2.2 Information up-to-dateness. There was a consensus among the participants that in order
to make a correct decision, the evidence used must be up-to-date (11/15). Indeed, prior work also
suggests that information currency is another crucial element contributing to its credibility, with
the intuition that the older a piece of information is, the more obsolete it gets, which implies a lower
level of trustworthiness [15, 26, 87]. This is especially true in today’s software development world,
where languages and libraries are constantly being updated and older versions are quickly rendered
obsolete by newer versions. For example, P6 was keen to stay on top of the state of the art of the
JavaScript frontend framework competition: “Is this speed comparison [between React, Angular, and
Vue] up-to-date now that Angular 9 was just released?” However, the above heuristic can be taken
with a grain of salt by some participants, citing reasons that software that was updated a long time
ago does not necessarily mean that it is obsolete. As P4 put it, “the last release of Haskell was like
10 years ago, but it’s still the latest version, and I still use it all the time in my work.” Nevertheless,
we elect to provide users with direct access to at least the last updated timestamp information
of each snippet that the author collected in an eort to help consumers assess up-to-dateness

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:13

faster. In addition, the separate information about versions, as mentioned above, allows users to
use whichever property is most relevant.

4.2.3 Information popularity. Echoing what has been reported in prior work that people seek social
proof when evaluating information credibility [87, 108], participants (8/15) said that the popularity
of information also plays an important role in its trustworthiness, with the general rule suggesting
that the more people that stand behind a solution, the more trustworthy it is. For example, P9 said:
“if there’re a lot of other devs [who] also think this is a better idea, then I’m much more comfortable to
use it.” This is similar to the endorsement heuristic [89], which suggests that people are inclined to
perceive information and sources as credible if others do so too. This inspired us to directly present
consumers with popularity signals (such as an answer’s up-vote number on Stack Overow, or the
number of claps of an article on Medium.com) from where snippets are collected.

Also included in the endorsement heuristic is that people sometimes follow others’ endorsements
without much scrutiny of the site content or source itself [89]. However, some of our study
participants suggest quite the opposite (7/15) — they often put much more emphasis on source
credibility over the popularity of specic information snippets from that source. For example, “in
retrospect, if an answer is taken from Stack Overow, I don’t really care about its up-vote number or if
it’s the ocially accepted one, I’ll just trust it and use it” (P3), or “I don’t really look at how many
people clapped over a Medium article, the fact that it’s from Medium.com is usually good enough for
me” (P8). Though seemingly inconsistent with prior work, we do not claim that this is typical in
the domain of programming — one possible explanation is that websites like Stack Overow by
default rank the most up-voted posts at the very top with the specic intention to present the most
popular information to readers.

4.2.4 Information consistency. In addition to source credibility, diversity, up-to-dateness, and
popularity, a few participants (5/15) suggested that having more corroborating evidence implies
that a piece of information is more trustworthy. For example, P6 said: “This [deep learning library
comparison chart] claims that PyTorch is much easier to learn than Tensorow, but I wonder if there’re
people suggesting otherwise? I kind of want to see at least one other expert that has experience with
both and also says PyTorch is better.” Prior research has also found that people will apply the
consistency heuristic to evaluate credibility, validating information by checking dierent websites
to make sure that the information was consistent [86, 89]. Meanwhile, consistency also implies the
converse — having contradicting evidence will undermine the trustworthiness of an existing piece
of information.

4.2.5 Author credibility. Prior work has shown that the author’s level of expertise impacts the
credibility of information [35, 108]. This is especially signicant in the domain of programming,
where there is a substantial dierence between novice and expert developers in their experience
and ability to evaluate code and libraries [22]. For example, when shown with a comparison table
on the topic of choosing a deep learning framework, P11 asked: “Does the author know what he’s
doing? I’d rather take advice from someone who’s an expert rather than some random undergrad.”
However, participants (4/15) also reported that there is no easy way to tell the level of expertise of
a table author or if that expertise matches with the topic of the table in the current Unakite system.

Another factor that impacts the credibility of an author is if he or she is biased, possibly due to
his or her aliation or personal preferences — for instance, P12 asked: “is the author saying all the
nice things about Cae [a deep learning framework] because he has lots of experience with it or because
he’s biased?” However, one participant also acknowledged that sometimes these “biases” may not
be as negative as it sounds — it could be an indication that an author is highly experienced with
one particular option and therefore gives favorable evidence for it. To address the above concerns,

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:14 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

prior research suggests that disclosing patterns of an author’s past performance may be a good
indication of his or her expertise as well as possible biases [65, 113, 116]. This motivated us to at
least allow the author to provide a link to his or her GitHub prole, and Strata will automatically
compute and show relevant expertise metrics (contribution activities, most procient programming
languages, etc.) and aliation information to the consumer.

4.3 Thoroughness
Another important facet when evaluating the appropriateness to reuse knowledge is thoroughness,
which deals with the process and the amount of eort used when creating the knowledge, its
coverage and scope, as well as any usable artifacts discovered or produced in the process.

4.3.1 Research process and eort. Prior work in sensemaking hando recommends that when
knowledge is handed-o from the author to the consumer, it should let the consumer be aware of
the prior investigative process and insights [100, 101, 131], such as how much work has been done,
and how mature the knowledge representation is [109, 111]. We also found relevant evidence from
the interviews: three participants recalled similar experiences where they learned that the previous
decision makers spent little time on exploring the decision space, and therefore the results were
“too immature to be picked up and reused” and “missing obvious criteria that you should denitely
not leave out”, and they ended up choosing to ignore those previous decisions and started from
scratch to conduct their own research instead. This motivated us to automatically keep track of
some of the authors’ actions as they create tables using Unakite, such as the search queries used,
the pages visited, the duration of their stay on each page and each query, etc. We then use these
data to compute key statistics as well as timelines and visualize them to the consumers to help
them better understand the author’s research and exploration process.
P9 also envisioned that having a holistic understanding of the author’s process would give her

the ability to parse out the author’s intention and focus (which may shift throughout the process,
as discussed earlier), and therefore provide hints about what she needs to focus on next if she were
to reuse this table as the basis for her own decision.

4.3.2 Alternatives or competitors. In addition to the process and eort, prior research recommends
that knowledge and sensemaking results should also make apparent their coverage and scope
[35, 87], for example, what alternatives have been considered, since not all options will necessarily
appear in a Unakite table (especially when the author thinks one does not t his or her particular
needs and is therefore not worth further investigation). However, this does not necessarily imply
that the option is inferior for the consumer. In our study, a few of our participants (6/15) were also
interested in knowing what would those alternatives (or competitors) be and how they compare
with the existing options before they could know if it is appropriate to reuse a table. For example,
“I heard anecdotally that Svelte gives you much better performance than all these big (JavaScript)
frameworks [React, Angular, and Vue]. I should take a look at that before I decide. Or maybe there’s
again something else?” (P14). This motivated us to take advantage of the Google Autocomplete API
to automatically obtain commonly searched-for alternatives to the options that are already in the
table, and present these alternatives to the consumers.

4.3.3 Usable artifacts. Lastly, participants (10/15) stressed the need for code examples and other
usable artifacts from a decision, just as prior work reported that developers need help nding
and reusing code examples [27, 28, 97, 102]. For example, P2 directly asked for code examples and
the author’s chosen option when presented with a decision table on various Java AST parsers:
“[are there] any code snippets that I can immediately plug into mine and test? Or if you can tell
me which is the one that the author used, I’ll just try that one rst.” A few (3/15) participants also

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:15

a

b

c

Fig. 3. On Strata startup, none of the groups are activated to keep the Unakite table on the right clean and
concise. Groups can also be collapsed to keep the sidebar interface clean (such as (a)). Mousing over each
snippet in the table will only show the exact content that an author captured by default (c), the same as the
original Unakite system, rather than the automatically captured context snapshots. Only aer a user activates
some groups in the Strata sidebar (by clicking on their titles) will the corresponding additional metadata
appear on the snippets in the table, as shown in Figure 1.

suggested that quickly trying out code examples to see if they work or not supersedes almost all
other information needs. However, we do not claim this is typical, and later follow-up exchanges
with these participants revealed that a vast majority of their current work is low-level detailed
implementation, where making sure the code works is of paramount importance. Nevertheless, we
implemented techniques to automatically extract code blocks from various snippets and present
them to consumers. In addition, we also detect authors’ copy events in the browser, and use those
as the basis for a heuristic to tell which option the author chose for the decision.

4.4 Summary
We found that when evaluating the appropriateness to reuse a piece of knowledge, one should
not only assess its trustworthiness (as the majority of the prior research has focused on), but also
check for its context and thoroughness. However, no previous system has made signicant attempts
to address developers’ specic information needs with regard to all three of these facets, or to
extract appropriateness properties from the original content and present them to the consumer of
the knowledge to facilitate reuse. In addition, this process should not put much burden on either
the author or the consumer [83, 119] by requiring them to manually locate those appropriateness
properties, suggesting the need for largely automatic mechanisms.

5 STRATA DESIGN AND IMPLEMENTATION
Based on the ndings in our interviews and the framework, we built a prototype system called
Strata to visualize properties and signals of the appropriateness to reuse for the consumers of a
decision.

5.1 Core Design Process and Rationale
We rst consulted the interview data and brainstormed the various signals and properties that would
theoretically address each of the information need listed in Table 1, column 2. Some information
needs can be directly addressed by obvious signals, such as surfacing the domain names of the
source web pages to consumers so that they know where the information in the table were collected
from and if those sources are credible. For information needs that would require explicit eort from

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:16 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

the table author to provide, such as the goal of a decision, we also consulted prior literature as
well as brainstormed about potential indirect signals that can be used by consumers to infer those
needs. For example, search queries are useful for inferring task goals and contexts of an author
[23, 92, 100, 111].
In order to obtain these signals, we then built tracking techniques to automatically keep track

of the author’s activities in the browser while searching and browsing during the creation of a
Unakite table. Many of these tracking and extraction techniques use heuristics that are based on
the current design of websites that developers most often use, such as extracting the number of
up-votes for an answer on a Stack Overow page. These are meant as a proof-of-concept, and more
elaborate and crowd-sourced extraction techniques could be added in the future.
We then set out to design a visualization that presents the consumers with these signals and

properties. During our exploration of the design space, we struggled with a fundamental tension
between consumers’ awareness of all the signals and consumers’ limited attention bandwidth. In
our initial prototypes, we placed all the signals (approximately 15) in a scrollable vertical list to the
left of the original Unakite table. Users would also be able to hide a signal if it was not relevant. We
hoped to make the users aware of all the signals that Strata can provide and give them complete
freedom to explore them as they wish. Another rationale for this design was that users would
be able to use a combination of signals to fulll a single information need, for example, both the
search queries and the pages visited will help indicate the author’s research process and eort, as
evidenced by the formative interviews. However, by implementing and testing these design probes
with a convenience sample of 8 developers, we realized that having “everything all at once” can be
overwhelming to the consumers, and they would prefer to just examine one facet at a time and
tune out the “noise” (signals that are irrelevant to the facet currently being examined). In addition,
we found that there was a disconnect between the signals we showed in the list on the left and the
actual content in the table on the right, causing consumers the additional mental burden of trying
to match them up. Showing the signals in context along with the various information snippets in
the table seemed to be a much better design to address this problem.

These ndings guided us towards a hierarchical visualization design of Strata’s consumer-facing
user interface: to structure these properties and guide the consumers through their evaluation
process, we designed Strata as a sidebar to a Unakite table. Strata’s sidebar contains three tabbed
overview panels for the three facets in the aforementioned framework (Figure 1-a). Each overview
panel provides multiple groups (e.g., Figure 1-b,c,d) of appropriateness properties to directly address
consumers’ information needs as summarized in the framework. In addition, by activating one
or more of the groups (by clicking on their titles in the sidebar), consumers will be able to view
additional information specic to each snippet in the table. For example, Figure 3 shows a state
where none of the groups are activated. After activating the Domains group and Evidence Snippets
group, consumers will be able to see for each snippet: where it originated (Figure 1-g1), how popular
it is (Figure 1-g2,3), and how old it is (Figure 1-g4). This is designed to provide consumers with
a high-level overview of each of the facets of reuse as well as the ability to dive into the parts of
interest, as recommended by Shneiderman [112]. It is also inspired by the lens interaction [24, 30]
where the same table content is addressed from three dierent perspectives.

Like Unakite, Strata consists of an extension to the Chrome Web browser and a web application.
Strata’s Chrome extension implements the aforementioned new tracking techniques on top of the
Unakite Chrome extension. The Strata web application is implemented in HTML, JavaScript, and
CSS, using the React JavaScript library [40] as the primary frontend UI development framework
and Google’s Firebase on the Google Cloud for data management and synchronization as well as
user authentication.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:17

a

d1

b

c

a1

e

d

e1

e2

Fig. 4. Strata’s Context panel. Consumers are able to check the search queries (a) that the author used to
understand his or her goal, examine the languages, frameworks, platforms, and their versions of the snippets
(b, d1), and view the surroundings of a snippet through the automatically captured context snapshots (e1).

We now discuss how the dierent features in Strata support the three facets listed in the previous
framework, and how they are implemented.

5.2 Context
5.2.1 Capturing goals with search queries. First of all, Strata automatically keeps track of authors’
search queries used in Unakite tasks as well as the duration of time they spent on each and
the number of information snippets they collected. The duration information is approximated
by comparing the timestamp when the next query is issued to that of the current one. It also
automatically leaves out any idle time (i.e., time where there is no activities detected in the browser,
by monitoring mouse movements, keyboard input, etc.) that are longer than a certain threshold
to make the duration approximation more accurate. The idle threshold was empirically tuned to
be 8 seconds based on data obtained through pilot testing, and can be exibly adjusted in the
future. For consumers, Strata visualizes these search queries as a list (Figure 4-a) to help consumers
understand the goals of the task author. They can use the sorting mechanisms at the top (Figure
4-a1) to sort the search queries by chronological order, by duration, or by the number of information
snippets yielded from each (which is the default sorting order, where ties are broken by ascending
chronological order).

There are several advantages of using search queries as a representation of an author’s goals. First,
they are direct translations of what an author thinks and intends to do to satisfy their information
need [104] — for example, issuing the query “numpy matrix vs list” implies that the author would
like to nd out the dierences between the two options. Second, unlike the original Unakite where
an author sets the single task goal (as the name of a task) at the beginning, keeping track of all of
the search queries (in temporal order) captures not only the author’s original goal (which usually
is the rst query based on pilot study data) but also the evolving nature of the goal (as identied
in the formative interviews). Third, the number of snippets yielded from each query serves as
an approximation of an author’s eort spent on that particular part of the task, which informs
consumers of the author’s focus throughout the decision making process.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:18 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

5.2.2 Contextualizing information with automatic context snapshots. To help consumers contex-
tualize and understand the meanings of options, criteria, and evidence in Unakite (identied as
one of participants’ frustrations), Strata introduces the idea of automatically keeping a snapshot
of the surroundings of a piece of content called context snapshot (inspired by [58]) as an author
collects information snippets. Strata uses Unakite’s snapshot feature, where website content can be
captured and preserved with its original styling, including the rich, interactive multimedia objects
supported by HTML. The bounds of the surroundings are by default dened as the main content
(Strata automatically tries to exclude any advertisements and other forms of injected content on a
website) in the visible area of a web page in the browser window. In addition, due to the popularity
and importance of Stack Overow in the domain of programming, we specically optimized this
feature to include not only the particular answer block an author collects information from but
also the original question block regardless of whether they are within the bounds, which provides
consumers with extra context information. Similar optimizations for other popular developer sites,
such as the ocial documentation, could be added in the future. On the consumer side, by clicking
on the title of the Snippet Surroundings group (Figure 4-c) in the Strata sidebar, consumers will be
able to view and scroll through the surroundings for each snippet (Figure 4-e1), with the content
that the author specically collected highlighted in yellow (Figure 4-e2).
This feature oers several benets to both the authors and the consumers. The surrounding

of a snippet is highly likely to include explicit explanations (such as screenshots, code examples,
and execution results) that can help consumers understand exactly what a snippet means. For
example, the Python Lists VS Numpy Arrays article [12] where a criterion snippet “more ecient”
was scooped from, also gives examples of how the two data structures allocate memory blocks
under the hood, suggesting that the author actually meant “morememory ecient” rather than
“more time ecient”. Unlike in Unakite, where an author needs to specically include that entire
paragraph when creating a snippet and then manually change the title of the snippet into “more
memory ecient” (which may disrupt the workow), Strata will automatically capture that helpful
paragraph into the snippet’s context snapshot. During the evaluation of context, consumers will be
able to directly view a snippet in its surroundings through its context snapshot without frequent
switches to the corresponding original web page to nd where the content where the snippet was
taken from (which is exactly what participants reported doing in the formative study interviews).

5.2.3 Detecting languages, frameworks, and their versions. Strata tries to automatically detect the
languages, frameworks, platforms, and their versions used in the snippets to directly address
consumers’ information needs. To ground this feature, we picked the top 10 of each of the most
popular languages, frameworks, and platforms from the 2020 Stack Overow developer survey
[13] and built detectors for them. The detectors for a language (or a framework, platform, etc.) is
implemented as a set of manually devised keywords (e.g., language statements, special variables,
le extensions, etc.) that can uniquely identify the usage or presence of that language. For exam-
ple, “es7”, “console.log”, “setTimeout”, etc. can be used to identify JavaScript, and “useState”,
“componentDidMount”, “findDOMNode”, etc. and be used to identify the React library. Keywords
that can cause ambiguities are specically avoided, such as “$” (the dollar sign) is simultaneously
a way to refer to variables in PHP and a shortcut for jQuery. Strata then automatically tries to
nd these detectors through optimized string matching in a snippet upon its collection. If there
is no hit within the snippet content, Strata will make a second attempt with the content of the
snippet’s parent web page. Subsequently, Strata uses regular expressions to nd version numbers
in the vicinity of detected languages, frameworks, and platforms (e.g., “Angular 9”, “Python 3.5”,
“React 16.13.1”, etc.) or in the web page’s URL (e.g., Java SDK version numbers are encoded in
the URL of its ocial documentation website). In an informal evaluation using materials containing

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:19

a
a1

a2

Fig. 5. The trusted domains whitelist. Consumers are able to remove a certain domain from the whitelist (a1)
or add new ones (a2).

only the currently supported languages, this mechanism was able to successfully extract language
information 100% of the time and correctly identify the version information 96% of the time. In the
future, one might imagine Strata pulling detectors from open-source detector repositories built,
veried, and maintained by the community, which can improve their quality, precision, and recall,
or at the very least, letting authors add or correct wrongly detected versions. On the consumer side,
this detected information is then presented directly on the corresponding snippet cards in the table
(Figure 4-d) as well as aggregated in the Languages, Frameworks, and Platforms group (Figure 4-b).

Directly surfacing these language, framework, and platform version entries to consumers will
help them quickly understand the technologies used in the task as well as the specic versions each
snippet uses at a glance, to support comparing those with their own situation. For example, one
developer would be easily able to gure out that the example code collected by the other developer
uses Python 2.7 and therefore does not match with his or her own environment, which uses Python
3.5.

5.3 Trustworthiness
To help consumers evaluate the trustworthiness of a table, Strata provides visualizations of various
properties that directly address their information needs listed in the framework (e.g., source
credibility, information popularity, etc.). Prior work has suggested that surfacing issues or problems
that could cause distrust is an eective way to alert and guide users’ attention during credibility
evaluations [87]. Therefore, in addition to visualizing the trustworthiness properties, we remind
users of potential issues that could negatively impact a table’s trustworthiness by marking them
with a red downward arrow (Figure 1-b2,c3,c4). The count of the number of issues is shown in a
colored badge on the top-right corner of the Trustworthiness panel (Figure 1-a1), with one issue
having a yellow color, and more than one issue having a red color (these user-adjustable levels
were empirically determined). Future development will explore more sophisticated weighting of
the issues beyond counting them equally.

5.3.1 Visualizing source credibility and diversity. As shown in Figure 1-b, Strata visualizes the
distribution of the snippets across dierent domains (websites) (Figure 1-b5), giving consumers a
high-level overview of the provenance of the information in the table. In addition, each snippet in
the table is also marked with its domain (Figure 1-g1), giving consumers a detailed understanding
of where each snippet originated.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:20 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

Strata also alerts consumers of potential untrusted domains by checking the presence of each
domain on a user-dened trusted domains whitelist, and ags the ones that are not on the list. For
example, a consumer will be able to immediately notice that one of the websites that the author used
to collect evidence, techgeekbuzz.com, is not on his or her own trusted domains whitelist (Figure
1-b2). Currently, the default whitelist was generated by mining and aggregating the websites that 5
full-stack developers (who work for dierent technology companies and routinely use a variety
of languages and technology stacks) visited from their browsing history. We then had them each
annotate the websites as either “credible” or “not credible”, and removed the ones that they did not
all agree upon. This resulted in 25 domains that are considered “credible”, including community
Q&A sites like stackoverflow.com, ocial documentation sites like angular.io, and blog sites
like medium.com. Domains that sometimes contain non-objective and low-quality information
are rejected, such as reddit.com. We by no means claim this is complete nor that it applies to
everybody — instead, it serves as a starting point and the consumers are able to add and remove
items themselves (Figure 5-a1,a2). They can also use the “add as trusted” button (Figure 1-b3) to
add a agged website to the whitelist so that any future information originating from that website
will not be considered as an issue. In the future, one can imagine taking advantage of a larger
consumer base and automatically marking websites as trusted if a majority of the consumers have
it on their whitelist. We also expect to periodically update the default whitelist over time, as new
programming technologies are created and become popular in the future.

To help with the evaluation of source diversity, Strata also alerts consumers when there is only
limited sources used to construct a table. Currently, Strata considers that there is an issue in terms
of source diversity if all of the information comes from one single source (reported by participants
in the formative studies as the worst scenario). If that is the case, the green upward arrow for
source diversity in Figure 1-b4 will become a red downward arrow, reminding consumers that it
is an issue. However, this threshold can be set by individual consumers, which would then apply
to all future table evaluations they perform. Similar to source credibility issues, this can also be
resolved or dismissed by individual consumers if they do not think it is problematic.

5.3.2 Examining evidence trustworthiness. Consumers will be able to get information about the
popularity, up-to-dateness, and the consistencies of the evidence by activating the Evidence Snippets
group (Figure 1-c).
Each snippet in the table will be marked with signals showing its popularity depending on

the websites and pages that it originates from. For example, if a snippet is collected from a Stack
Overow answer post, Strata will automatically extract and show the up-vote number of that
post (Figure 1-g2) as well as if that answer is the ocially accepted answer (Figure 1-g3). If a
snippet is collected from a Medium.com article, Strata will show the number of claps that article
had at the time of collection. We designed this feature to closely t developers’ current ways of
evaluating popularity, as reported in the formative studies. Strata will also display an alert in the
Evidence Snippets group if some of the snippets in the table have particularly low popularity, such
as down-votes on Stack Overow. As with the other kinds of detectors, we envision these being
augmented over time based on where developers are mostly getting their information from.
Unlike the original Unakite, which only showed when information was collected (reported as

“not exactly helpful” by participants in the formative interviews), each snippet in the table will be
marked by Strata with the timestamp of when its parent webpage (or answer post if it is from Stack
Overow) was last updated (Figure 1-g4). Strata uses a combination of techniques to extract the
last updated timestamp information, including using regular expressions to look for date strings
in website source code and taking advantage of the JavaScript document.lastModified variable
(only when the website is static). This serves as a direct measurement of the age of information,

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:21

and gives consumers an idea of how old the information is. Our study participants also mentioned
that they often had trouble quickly locating when articles or blogs are updated online as these
timestamps are often displayed in less salient font styles or not visible at all. In addition, Strata will
ag snippets that are older than 3 years as a potential issue in the Evidence Snippets group (Figure
1-c3), which, similar to other issues, can be manually adjusted or dismissed by the consumer.

Finally, Strata provides initial support for information consistency by informing consumers if
there are corroborating or conicting evidence snippets in a table cell (e.g., there are simultaneously
both thumbs-up and thumbs-down ratings for “numpy ndarray” causing “less memory wastage
or shortage”) (Figure 1-c4). The culprit table cells with conicting evidence will be highlighted by
mousing over the issue in the Evidence Snippets group, addressing concerns from participants in
the formative studies about how such contradictions could be overlooked once a table gets larger
with more evidence ratings.

5.3.3 Surfacing properties about author credibility. Strata provides consumers with help in evaluat-
ing author credibility by allowing authors to manually provide information about themselves. In
the current implementation, a table author can input a link to their GitHub prole, and Strata will
automatically present the author’s name, numbers of stars on the most popular code repositories
he or she owns, most used programming languages, aliation, and a link to his or her GitHub
prole page in the Task Author group (Figure 1-d). We opted to let authors voluntarily provide this
information in order to give them the option to protect their privacy and identity. In the future, we
will work on mechanisms to automatically perform author modeling in a privacy-preserving way —
one idea is to analyze the topics of Stack Overow questions and coding forums that an author
frequently visits to infer his or her expertise. We will also provide an option for authors to provide
certain information to consumers anonymously.

5.4 Thoroughness
5.4.1 Understanding the research process. In order to provide consumers with a clear understanding
of an author’s research and exploration process, Strata automatically keeps track of several of the
author’s activities in the background — in addition to the search query tracking discussed earlier,
Strata also automatically records the web pages visited, as well as the time spent, progress made
(approximated by tracking the percentage of a page that has been scrolled into the visible browser
window using JavaScript’s window.onscroll event), and the number of information snippets
collected on each of the web pages.
With these activity data, Strata computes the duration of time the author spent working on a

task, the length of time since the task was last updated by the author, and the numbers of options,
criteria, and evidence snippets that the author collected (Figure 6-a1).
In addition, Strata visualizes the activity information on a timeline view (Figure 6-b), which

provides an integrated chronological representation of the author’s entire research and exploration
process during a task. The timeline view is organized with two levels of hierarchies: rst by the
search queries, and then by the pages that are visited during a particular search. The timeline
view is color-coded by dierent shades of a violet color, with increasing intensity indicating the
chronological order (a lighter violet means older). The same color scheme is also applied to the
background of the table cells (Figure 6-c) when the Research Process group is activated. The timeline
view is also interactive, mousing over a search query or a page will highlight its corresponding
information snippets in the table, together with the colored background, giving consumers an
understanding of how the table was constructed chronologically.

5.4.2 Suggesting alternatives. Another way for Strata to help with the thoroughness evaluation is
to provide consumers with commonly searched for alternatives to each option (Figure 6-f1,f2,f3). For

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:22 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

Thoroughness Panel continued

a a1

b

d

e

g

g1

g2

f

f1

f2

f3

c

Fig. 6. Strata’s Thoroughness panel. Consumers are able to understand the author’s research process (a) with
the help of the timeline view (b) (a lighter violet means older chronologically), check commonly searched for
alternatives to the existing options (d, f1, f2, f3), and check the code examples in the snippets (e).

every option in the table, Strata will automatically obtain the potential alternatives to that option
by making Google search queries in the form of “[option_name] vs” or “[option_name] versus”
and obtaining a list of top 10 auto-complete candidates using the Google Autocomplete API. This
will then be transformed into the alternatives list for the corresponding option by extracting and
cleaning the part after “vs” or “versus” for each auto-complete candidate, followed by aggregating
and removing duplicates. The results are presented in the Commonly Searched for Alternatives
group (Figure 6-d). These alternative lists are generated on the spot every time a table is being
reviewed, making sure that Strata always presents the latest information.
This approach oers several benets to the consumers of the table. First, it oers insights into

the popularity of the existing options in the table — if an option (such as “React”) appears in all
other options’ alternatives lists (such as for “Angular” and “Vue”), it suggests that this option has
a high popularity. Second, it provides consumers with an understanding of the coverage of the
author’s research process as well as guidance on potential new opportunities to explore next —
if an item (such as “pandas dataframe” in Figure 6-d) frequently appears in the existing options’
alternatives lists (and therefore will rank higher in the aggregated list in the Commonly Searched
for Alternatives group), it suggests that this item might have been overlooked by the author initially,
or it might not have been available back when the table was made, and the consumers can focus
their investigative eort on it next before deciding whether to reuse this table. This feature could

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:23

help authors as well, oering real-time reminders of the coverage of their research process and
possible new options to consider as they are making decisions.

5.4.3 Presenting usable artifacts. Finally, Strata automatically detects and extracts any code exam-
ples included in the collected snippets and presents them in the Code Examples group under the
Thoroughness panel (Figure 6-e). This provides consumers the opportunity to directly examine and
try out any code examples involved rst without diving deeper into the table. In addition, when the
Code Examples group is activated, a “contains code examples” badge (Figure 6-g1,g2) will appear on
snippets that contain code examples, helping consumers quickly locate potential code examples for
a particular option or criterion in the table.

6 EVALUATION
We conducted a lab study to evaluate the eectiveness of the framework and the prototype Strata
system in helping developers evaluate the appropriateness of reusing decisions.

6.1 Experiment Design
6.1.1 Participants. We recruited 20 participants (13 male, 7 female) aged 22-37 (µ = 26.95, σ = 3.81)
years old through emails and social media. The participants were required to be 18 or older, uent
in English, and experienced in programming. Participants on average had 8.3 (σ = 3.3) years of
programming experience, with 11 of them currently working or having worked as a professional
developer and the rest having programming experience in universities.

6.1.2 Procedure. Participants were presented with 3 tasks in random order. The topics of the tasks
were: (a) choosing a python data structure to represent matrix-like data (referred to as Python from
here on), (b) choosing a deep learning framework to build neural networks (referred to as Deep from
here on), and (c) choosing a cloud computing service to build a video-streaming application (referred
to as Cloud from here on). For each task, participants were told what to pretend their background
and context was, and they needed to read a table and answer questions about: (1) how much do
they think the table is relevant to their given background and context; (2) how much do they trust
the content of the table; and (3) to what extent do they think the research eort put into making the
table is thorough. Participants were required to list out specic reasons to justify their evaluations.

The study was a between-subjects design, where participants were randomly assigned to either
the Strata condition or the Unakite (control) condition. In the Strata condition, participants had full
access to all the Strata features described above (along with the table produced by Unakite), while
in the Unakite condition, these new features were turned o, so the participants saw only the table,
and snippets in the table only showed their titles, contents, timestamps of collection, and links to
their original web pages. We imposed a 10-minute limit per task to keep participants from getting
caught up in one of the tasks. However, participants were instructed to inform the researcher when
they thought they had nished the task or felt like they could make no further progress.
We chose Unakite as the control condition as opposed to raw (and textual) comparison tables

online to make sure both conditions had a similar user interface to work with. It also makes the
comparison between conditions more realistic — since the original Unakite is already keeping track
of where snippets are collected, participants in the Unakite condition would have the ability to go
back to the source to examine the appropriateness signals (such as up-vote numbers, last-updated
timestamp, etc.) if they wanted to.
Each study session started by obtaining the proper consent and having the participant ll out

a demographic survey. Participants in the Unakite condition were given a 10-minute tutorial
showcasing the various features of the Unakite web application as well as a practice task on the
topic of “choosing a JavaScript frontend framework” before starting. Those in the Strata condition

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:24 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

Time nTotal nValid for
Context

nValid for
Trustworthiness

nValid for
Thoroughness

nValid nHigh Quality Precision Recall

Unakite 484.2 (37.8)* 5.20 (0.92)* 1.50 (0.53) 1.30 (0.48)* 1.20 (0.42)* 4.00 (0.67)* 2.90 (0.57)* 55.7% (4.9%)* 24.2% (4.7%)*
Strata 328.2 (48.1)* 7.90 (1.91)* 1.50 (0.53) 3.20 (0.79)* 2.70 (0.82)* 7.40 (1.51)* 7.10 (1.45)* 90.1% (6.8%)* 59.2% (12.1%)*

(a) Python (nRef. Highality = 12)

Time nTotal nValid for
Context

nValid for
Trustworthiness

nValid for
Thoroughness

nValid nHigh Quality Precision Recall

Unakite 393.4 (50.9)* 5.70 (1.06)* 1.70 (0.48) 1.60 (0.70)* 1.40 (0.52)* 4.70 (0.82)* 3.20 (0.92)* 56.1% (12.4%)* 29.1% (8.3%)*
Strata 276.2 (68.3)* 7.80 (1.87)* 1.70 (0.67) 3.00 (1.15)* 2.60 (0.70)* 7.30 (1.83)* 6.90 (1.97)* 88.1% (9.7%)* 64.5% (17.4%)*

(b) Deep (nRef. Highality = 11)

Time nTotal nValid for
Context

nValid for
Trustworthiness

nValid for
Thoroughness

nValid nHigh Quality Precision Recall

Unakite 420.4 (58.9)* 6.20 (1.03)* 1.40 (0.51)* 1.90 (0.74)* 1.50 (0.53)* 4.80 (1.14)* 3.60 (0.97)* 58.5% (15.2%)* 30.0% (8.1%)*
Strata 271.8 (35.3)* 9.60 (2.37)* 2.60 (0.84)* 3.80 (0.92)* 2.60 (0.70)* 9.00 (2.00)* 7.90 (1.45)* 83.8% (8.5%)* 65.8% (12.1%)*

(c) Cloud (nRef. Highality = 12)

Table 2. Lab study results. The numbers of gold standard high quality reasons for each task, nRef. Highality,
are listed in their respective captions. We report the mean and standard deviation for: (1) the time in seconds
taken to finish a task; (2) the total number of reasons participants came up with, nTotal; (3) the number of
valid reasons, nValid; (4) the number of high quality reasons, nHighality; (5) the precision of high quality
reasons, calculated as nHighality/nTotal; (6) as well as the recall of high quality reasons, calculated as
nHighality/nRef. Highality. Statistically significant dierences (p < 0.05) through t-tests are marked with
an *.

were given a same-length tutorial as well as the same practice task but in Strata instead. At the end
of the study, the participant was invited to ll out a questionnaire focusing on the experience of
using either Strata or Unakite. We asked questions on the usability of the system they used in their
respective conditions, the usefulness of such tables generated by the system, their opinions of the
dierent features of the system, their willingness to author tables using the system to keep track of
their decisions, their concerns about privacy if they were to author tables, as well as their familiarity
with the topic of the three tasks used in the study. Finally, we ended the session with an informal
interview on any additional thoughts they had about the system they used. Each study session
took about 60 minutes per participant and was done remotely using the Zoom video-conferencing
application. All participants were compensated $15 for their time.

6.2 antitative Results
All participants were able to complete all of the tasks in both conditions, and none of them went
over the pre-imposed time limit.

The results show that the participants in the Strata condition took signicantly less time to nish
compared to the Unakite condition for all three tasks, as shown in Table 2. Across all three tasks,
the average time for completion was reduced by 32.5% when using Strata (Mean = 292.1 seconds,
σ = 56.9 seconds) compared to using Unakite (Mean = 432.7 seconds, σ = 61.8 seconds), which
is also statistically signicantly (p < 0.05). Thus, using Strata did help participants evaluate the
appropriateness for reuse faster.
To assess the quality of the reasons that participants came up with, before the study, two

professional developers who are not aliated with the research each generated a list of high quality
reasons for all three tables independently. After resolving conicts through discussions between
the two developers, we produced a list of high-quality reasons for each table as the “gold standard”.
We then calculated and report in Table 2 the numbers of high quality reasons participants identied
that are on the “gold standard” list, as well as the precision (calculated as nHigh Quality/nTotal) and

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:25

(a) Precision of high quality reasons
(nHighality/nTotal.)

(b) Recall of high quality reasons
(nHighality/nRef. Highality.)

Fig. 7. Precisions and recalls of high quality answers in all three tasks. All results are statistically significant
under t-tests (p < 0.05).

recall (calculated as nHigh Quality/nRef. High Quality) of high-quality reasons (where nTotal is the total
number of reasons they generated, and nRef. High Quality is the number of “gold standard” high-
quality reasons for each task). By plotting the precisions and recalls in Figure 7, we can see that
participants in the Strata condition achieved higher precision in all three tasks, that is, they gave a
higher percentage of high-quality reasons in their responses compared to the Unakite condition.
Participants in the Strata condition also achieved higher recall in all three tasks, that is, they were
able to nd more high-quality reasons compared to the Unakite condition. Thus, using Strata did
help participants improve the quality of their evaluations compared to using Unakite.

In case participants came up with valid answers we had not thought of, after the study, we asked
the same two developers as above to rate each reason that participants gave as either valid or not
valid blind to the conditions. Valid reasons are considered as the ones that are specic and correct
according to the content of the table. After resolving conicts through discussions between the
two developers, we ltered out the reasons that are considered invalid, and presented the resulting
numbers of valid reasons in Table 2 (the numbers of invalid reasons were negligible and were
therefore not included in the table). Across all three tasks, the average total number of valid reasons
(nValid) increased by 75.6% when using Strata (Mean = 7.90, σ = 1.90) compared to using Unakite
(Mean = 4.50, σ = 0.94), which is also statistically signicant (p < 0.05). Thus, using Strata appeared
to help participants come up with more valid evaluations for appropriateness for reuse compared
to Unakite alone.

In the survey, participants reported (in 7-point Likert scales) that they thought the interactions
with Strata were understandable and clear (Mean = 6.20, Median = 6.00, 95% CIs = [5.75, 6.46]),
they enjoyed Strata’s features (Mean = 6.00, Median = 6.00, 95% CIs = [5.45, 6.72]), and would
recommend Strata to friends and colleagues (Mean = 6.10, Median = 6.00, 95% CIs = [5.65, 6.35]).

6.3 alitative Results
6.3.1 Usability and usefulness of Strata’s features. Overall, participants appreciated the increased
transparency and eciency aorded by various Strata features and highlighted the values of the
appropriateness properties that we visualize, arguing that “it helps me understand how a table
was made step by step” (P10), “lets me know what the author searched for, so if I don’t understand
something, I can search again. And more importantly, I can sort of know what the author didn’t look for,
and sometimes that’ll become what I can do next” (P4), “[the automatic context snapshot feature] saves
me lots of time that I would otherwise spend going to the source web pages and making sense of things,
which could be a rabbit hole sometimes” (P15), and “[allows me to] see on a high-level where stu

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:26 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

comes from and if there’s any source that is potentially questionable” (P13). In addition, P8 reected
that Strata “serve(d) as a guidance for things that I should pay attention to,” which underlines the
value of our framework, and reminded some participants of appropriateness properties that they
would otherwise overlook, such as “I never really thought about what the author(s) looked for or
not, but now I think it’s actually quite important, especially if they miss obvious things that an expert
would never miss,” (P6) and “I realize that I’m more of a grab-and-go kinda person and I don’t usually
remember to check how many up-votes a Stack Overow answer gets or when it was last updated”
(P17).

6.3.2 Authoring tables. Participants were also excited about authoring tables with Strata running,
as it will automatically extract and produce the sidebar on the left and the various signals in the
table. They mentioned that such “honest signals enhanced” (P10) tables would be particularly useful
in situations such as code reviews (P6: “going through the three main aspects is like going through
our usual quality checklist, which makes sure that we’re not missing anything”) and project takeovers
(P13: “if my previous browsing sessions are captured by this, then I won’t need to make myself available
again and again if somebody else suddenly has a question that only I know the answer to, since I made
it in the rst place—this table thing will almost be self-explanatory”).

6.3.3 Privacy concerns. Some participants shared their privacy concerns from an author’s perspec-
tive, mentioning that certain types of metadata that could reveal their personal preferences and
idiosyncrasies (e.g., the code that they used, the snippet surroundings, and their search queries)
should be kept private until they felt comfortable sharing. Indeed, prior work has pointed out
that there may be negative eects of surfacing certain types of information [38]. These ndings
identied new research opportunities for (1) intelligent mechanisms that can automatically screen
for and block out information that should be kept private (e.g., similar to [74] or [61]) and (2)
mixed-initiative and interactive mechanisms [56] that collaborate with users to only preserve the
information that they are comfortable sharing (e.g., similar to [75]) without compromising the
usability and eectiveness of the system.

7 DISCUSSION
Prior research on web credibility stressed the importance of trustworthiness measurement during
the evaluation of the appropriateness to reuse a previously created knowledge artifact [55]. However,
as we found from literature on sensemaking hando and our formative study, evaluating the
appropriateness of reuse is much more than simply verifying the trustworthiness [55], especially
since the artifacts are often an author’s collection and synthesis of dierent individual pieces of
information from dierent sources and reect the author’s opinion about the trade-os among
multiple valid options [83]. As a result, in addition to understanding whether the content is
trustworthy, consumers also need to understand if the original problem context when the author
created the artifact matches with the consumer’s [55, 85], and if the author’s research process was
thorough [37, 100]. One of the contributions that we make in this work is a framework (Table 1) that
summarizes the aforementioned three major facets, serving as a checklist that guides consumers
through their evaluation processes. Strata, which is an instantiation of the framework, improves
consumers’ abilities to evaluate these facets compared to using Unakite alone, as evidenced by
both the quantitative (i.e., number of valid reasons given by the participants in terms of each facet)
and qualitative results (e.g., participants’ comments on Strata reminding them of double checking
appropriateness properties that they would otherwise overlook).

Although prior work on trust and sensemaking hando oers insights into the various aspects
and properties that are important for evaluating the appropriateness of reuse, it remained costly
and dicult for not only the author who was creating the knowledge to also keep track of those

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:27

signals and save them somewhere (since it is extra work without immediate benet), but also for
the consumer who was interpreting the knowledge to deduce and speculate about those signals.
Through our research, we learned that an reasonable number of appropriateness signals can
automatically be captured at authoring time as well as processed and visualized to the consumers
subsequently to help with the reuse evaluation, and thereby reduce the cost for people to build on
each other’s knowledge artifacts.

8 FUTUREWORK
One participant (P4) in the evaluation study said “I can imagine myself having this table page open
as I collect stu so I can check how well I’m doing as I go”, which suggests that Strata not only can
help consumers but also provides value for authors at collection time — authors can use Strata
features to help them know how well their decisions will be judged, how thorough they have been,
whether they are using up-to-date materials, if there have been any version mismatches, etc. In
the future, we would like to investigate how to integrate these Strata visualization features into
authors’ workows to help them “proofread” their decision making processes in real time.

Currently, Strata has settings that consumers can tune based on their personal preferences, such
as the trusted domain whitelist. Future work is needed to investigate mechanisms that can enable
consumers to also personalize an existing table, such as adding, editing, and removing certain
elements, eectively creating new versions of that table without overriding the original author’s
version. In addition, it would also be an interesting challenge to aggregate the changes in dierent
consumers’ versions and propagate them back to the original author as constructive feedback.

Finally, our approach may have potential implications for other situations and domains involving
user-generated content (beyond comparison tables), in which knowledge consumers need to evalu-
ate the relevance and trustworthiness of that content. For example, the context, trustworthiness,
and thoroughness facets could provide generative inspirations for helping users evaluate how
knowledge artifacts were constructed, such as in Wikipedia (e.g., which sources were considered
for an article, properties of the contributors, and coverage of key topics mined from similar articles),
Q&A sites like Stack Overow where many people collaborate and edit questions and answers
together; curation platforms such as Pinterest, or thousands of other wiki systems. Generalizing
how to augment knowledge reuse for situations beyond decision making in programming is an
interesting and potentially fruitful area for future investigation, including exploring which infor-
mation needs identied in this paper may not be as relevant and which additional needs become
important. On the one hand, such an endeavor could unlock cycles of knowledge reuse in which
people can quickly make good judgements about which information to aggregate and accumulate,
which then become useful signals for making future judgements easier as well. On the other hand,
the various signals and properties that are automatically surfaced could raise consumers’ awareness
of the potential existence of mis-information online [121] and provide readily available evidence to
combat it.

9 LIMITATIONS AND RISKS
There are certain types of information that Strata is not able to automatically obtain and visualize.
One set of limitations results from Strata working in the browser, so it cannot monitor activities
which happen in the authors’ code editors or IDEs, command line interfaces, and relevant discus-
sions with friends and colleagues (communicated either verbally or electronically through chat
applications like Slack). Further development of extensions in these dierent environments as well
as research into how to coordinate the collection and organization of this information would be
needed in order to provide consumers with a more complete picture of an authors’ working context
beyond the browser. However, even in situations where Strata cannot automatically calculate a

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

166:28 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

signal, we believe that the three major facets still alert consumers that these are important aspects
to be considered. Also, to the extent that consumers come up with their own measurements and
ways to fulll their information needs, they are perfectly welcome to do so, such as testing if a
piece of sample code returns the desired result by running it in a terminal, which the current Strata
does not automatically do.

Some of the features in Strata are currently implemented based on heuristics, such as the bounds
of the automatic context snapshots and the threshold beyond which information is considered
out-of-date. These heuristics are based on our preliminary piloting through limited iterations, and
may not apply universally to every situation. Further development can make these features more
universally applicable and more adaptive to dierent situations so that users will be able to rely
more on the judgements that Strata automatically generates.

The current design of Strata is intended for use cases where people collaborate and communicate
their knowledge artifacts with each other in good faith; for example, software engineers sharing
design rationale within a team. However, for Strata to be used at scale with potentially malicious
actors, such as in situations where some authors might try to increase the trustworthiness and
thoroughness scores by manipulating the dierent metrics that it uses and displays, additional
signals as well as mitigation techniques might be needed to combat such gaming behaviors. One
approach would be to aggregate multiple knowledge artifacts with similar context (options, criteria,
and goals in the case of Unakite comparison tables) together and detect and lter out anomalous
components, inspired by mechanisms like “down-voting” that community Q&A sites (e.g., Stack
Overow) use to guard against incorrect and malicious answers at scale. Further, some of the
information, like the context, seems dicult and pointless to distort.
One of the concerns that repeated during our iterative design process is that each surfaced

appropriateness property ultimately competes for user attention and takes time for the reader to
process [65], which could result in the overall user interface being overwhelming. The current
solution we employed, inspired by prior work in recursive summarization and sensemaking [129,
130], takes a hierarchical approach that presents users with an overview and the ability to dive into
specic details, letting them take the initiative of exploring parts relevant to their own interests.
Future research is needed to untangle the relative importance of the various factors and how they
can be alternatively represented. One idea is to gather large amounts of usage data from a eld
deployment and develop statistical or machine learning-based models that can predict importance
metrics given various input parameters.

Finally, our lab evaluation contains several limitations. Given the short amount of training time
participants had, some may not have been able to get fully acquainted with the various features
that Strata oers. The tasks used in the study may not be what participants encounter in their daily
work, and participants may not have the necessary context and sucient agency as they do in
real life. We mitigated these risks by asking participants to complete a practice task simulating
what they would need to do in the study to help them get familiarized with Strata as well as the
ow and cadence of the tasks. To improve realism, all three tasks used in the study were based on
actual questions asked by real developers online, and the tables used in the study were adapted
by the rst author from real comparison tables we found online. For each task, we also provided
participants with some background information and context to get them prepared. In the future,
we would like to further address these limitations by conducting a long-term larger-scale eld
study, where developers will have both sucient familiarity with Strata through repeated usage
and motivation to reuse decisions that are relevant to their own work.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:29

10 CONCLUSION
Appropriate reuse of previously created knowledge requires judging its relevance, trustworthiness,
and thoroughness in relation to an individual’s goals and context. In this work, we synthesized a
framework for such reuse judgements in the domain of programming through analysis of prior
research on sensemaking and trust as well as new needs-nding interviews with developers. In
addition, we developed a prototype system called Strata that automatically captures and visual-
izes some of the signals described in the framework that would facilitate subsequent knowledge
consumers’ reuse decisions, which proved to be eective and useful in a user study.
Unakite and Strata together point to the importance of having tool support that helps people

more eciently organize and manage information as they nd it in a way that could also be
benecial to others, and therefore bootstrapping the virtuous cycle of people being able to build on
each other’s sensemaking results, fostering ecient collaboration and knowledge reuse.

ACKNOWLEDGMENTS
This research was supported in part by NSF grants CCF-1814826 and FW-HTF-RL-1928631, Google,
Bosch, the Oce of Naval Research, and the CMUCenter for Knowledge Acceleration. Any opinions,
ndings, conclusions, or recommendations expressed in this material are those of the authors and
do not necessarily reect the views of the sponsors. We would like to thank our study participants
for their kind participation and our anonymous reviewers for their insightful feedback. We are
grateful to Amber Horvath, Toby Jia-Jun Li, Haojian Jin, Joseph Chee Chang, Nathan Hahn, Zheng
Yao, Yiyi Wang, Tianying Chen, Haitian Sun, Jiachen Wang, and Jinlei Chen for their valuable
feedback and constant support, especially during the COVID-19 pandemic.

REFERENCES
[1] [n.d.]. Build software better, together - Github. https://github.com
[2] [n.d.]. Getting started with machine learning. https://github.com/collections/machine-learning
[3] [n.d.]. npm | build amazing things. https://www.npmjs.com/ Library Catalog: www.npmjs.com.
[4] [n.d.]. Programming languages: A list of programming languages that are actively developed on GitHub. https:

//github.com/collections/programming-languages
[5] [n.d.]. Stack Overow - Where Developers Learn, Share, & Build Careers. https://stackoverow.com/
[6] [n.d.]. Wikipedia. https://www.wikipedia.org/
[7] 2009. PUT vs. POST in REST. https://stackoverow.com/a/32524385
[8] 2009. Which equals operator (== vs ===) should be used in JavaScript comparisons? https://stackoverow.com/a/

26923895
[9] 2019. Front-end JavaScript frameworks. https://github.com/collections/front-end-javascript-frameworks
[10] 2020. "exports" cong · Issue #20 · then/is-promise. https://github.com/then/is-promise/issues/20 Library Catalog:

github.com.
[11] 2020. pip - The Python Package Installer — pip 20.1 documentation. https://pip.pypa.io/en/stable/
[12] 2020. Python Lists VS Numpy Arrays. https://www.geeksforgeeks.org/python-lists-vs-numpy-arrays/ Library

Catalog: www.geeksforgeeks.org Section: Python.
[13] 2020. Stack Overow Developer Survey 2020. https://insights.stackoverow.com/survey/2020/
[14] B. Thomas Adler and Luca de Alfaro. 2007. A content-driven reputation system for the wikipedia. In Proceedings

of the 16th international conference on World Wide Web (WWW ’07). Association for Computing Machinery, Ban,
Alberta, Canada, 261–270. https://doi.org/10.1145/1242572.1242608

[15] Janet E. Alexander and Marsha A. Tate. 1999. Web Wisdom; How to Evaluate and Create Information Quality on the
Webb (1st ed.). L. Erlbaum Associates Inc., USA.

[16] Rana Alkadhi, Teodora Lata, Emitza Guzmany, and Bernd Bruegge. 2017. Rationale in Development Chat Messages:
An Exploratory Study. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). 436–446.
https://doi.org/10.1109/MSR.2017.43

[17] Saleema Amershi and Meredith Ringel Morris. 2008. CoSearch: A System for Co-located Collaborative Web Search.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08). ACM, New York, NY, USA,
1647–1656. https://doi.org/10.1145/1357054.1357311

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

https://github.com
https://github.com/collections/machine-learning
https://www.npmjs.com/
https://github.com/collections/programming-languages
https://github.com/collections/programming-languages
https://stackoverflow.com/
https://www.wikipedia.org/
https://stackoverflow.com/a/32524385
https://stackoverflow.com/a/26923895
https://stackoverflow.com/a/26923895
https://github.com/collections/front-end-javascript-frameworks
https://github.com/then/is-promise/issues/20
https://pip.pypa.io/en/stable/
https://www.geeksforgeeks.org/python-lists-vs-numpy-arrays/
https://insights.stackoverflow.com/survey/2020/
https://doi.org/10.1145/1242572.1242608
https://doi.org/10.1109/MSR.2017.43
https://doi.org/10.1145/1357054.1357311

166:30 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

[18] Jonathan Howard Amsbary and Larry Powell. 2003. Factors inuencing evaluations of web site information. Psycho-
logical Reports 93, 1 (Aug. 2003), 191–198. https://doi.org/10.2466/pr0.2003.93.1.191

[19] B.H. Barns and T.B. Bollinger. 1991. Making reuse cost-eective. IEEE Software 8, 1 (Jan. 1991), 13–24. https:
//doi.org/10.1109/52.62928 Conference Name: IEEE Software.

[20] David Baxter, James Gao, Keith Case, JennyHarding, Bob Young, Sean Cochrane, and Shilpa Dani. 2007. An engineering
design knowledge reuse methodology using process modelling. Research in Engineering Design 18, 1 (May 2007),
37–48. https://doi.org/10.1007/s00163-007-0028-8

[21] David Baxter, James Gao, Keith Case, Jenny Harding, Bob Young, Sean Cochrane, and Shilpa Dani. 2008. A framework
to integrate design knowledge reuse and requirements management in engineering design. Robotics and Computer-
Integrated Manufacturing 24, 4 (Aug. 2008), 585–593. https://doi.org/10.1016/j.rcim.2007.07.010

[22] Andrew Begel and Beth Simon. 2008. Novice software developers, all over again. In Proceedings of the Fourth
international Workshop on Computing Education Research (ICER ’08). Association for Computing Machinery, Sydney,
Australia, 3–14. https://doi.org/10.1145/1404520.1404522

[23] Krishna Bharat. 2000. SearchPad: explicit capture of search context to support Web search. Computer Networks 33, 1
(June 2000), 493–501. https://doi.org/10.1016/S1389-1286(00)00047-5

[24] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. 1993. Toolglass and magic lenses: the
see-through interface. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques
(SIGGRAPH ’93). Association for Computing Machinery, New York, NY, USA, 73–80. https://doi.org/10.1145/166117.
166126

[25] Pia Borlund. 2003. The concept of relevance in IR. Journal of the American Society for In-
formation Science and Technology 54, 10 (2003), 913–925. https://doi.org/10.1002/asi.10286 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.10286.

[26] D. Scott Brandt. 1996. Evaluating Information on the Internet. Computers in Libraries 16, 5 (1996), 44–46.
[27] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010. Example-centric Programming: Integrat-

ing Web Search into the Development Environment. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY, USA, 513–522. https://doi.org/10.1145/1753326.1753402

[28] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two Studies of Opportunistic
Programming: Interleaving Web Foraging, Learning, and Writing Code. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA, 1589–1598. https://doi.org/10.1145/
1518701.1518944 event-place: Boston, MA, USA.

[29] Joseph Chee Chang, Nathan Hahn, and Aniket Kittur. 2020. Mesh: Scaolding Comparison Tables for Online Decision
Making. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST ’20).
Association for Computing Machinery, New York, NY, USA, 391–405. https://doi.org/10.1145/3379337.3415865

[30] Joseph Chee Chang, Nathan Hahn, Adam Perer, and Aniket Kittur. 2019. SearchLens: composing and capturing
complex user interests for exploratory search. In Proceedings of the 24th International Conference on Intelligent User
Interfaces (IUI ’19). Association for Computing Machinery, Marina del Ray, California, 498–509. https://doi.org/10.
1145/3301275.3302321

[31] Kathy Charmaz. 2006. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis. SAGE. Google-
Books-ID: 2ThdBAAAQBAJ.

[32] Yan Chen, SangWon Lee, Yin Xie, YiWei Yang, Walter S. Lasecki, and Steve Oney. 2017. Codeon: On-Demand Software
Development Assistance. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17).
ACM, New York, NY, USA, 6220–6231. https://doi.org/10.1145/3025453.3025972

[33] Herbert H. Clark and Susan E. Brennan. 1991. Grounding in communication. In Perspectives on socially shared
cognition. American Psychological Association, Washington, DC, US, 127–149. https://doi.org/10.1037/10096-006

[34] Thomas H. Davenport, Sirkka L. Jarvenpaa, and Michael C. Beers. 1996. Improving Knowledge Work Processes. Sloan
management review 37, 4 (1996), 53–65. https://dialnet.unirioja.es/servlet/articulo?codigo=2514140 Publisher: MIT
press Section: Sloan management review.

[35] Peter Denning, Jim Horning, David Parnas, and Lauren Weinstein. 2005. Wikipedia risks. Commun. ACM 48, 12 (Dec.
2005), 152. https://doi.org/10.1145/1101779.1101804

[36] Nancy M. Dixon. 2000. Common Knowledge: How Companies Thrive by Sharing What They Know. Harvard Business
School Press, USA.

[37] Paul Dourish and Victoria Bellotti. 1992. Awareness and coordination in shared workspaces. In Proceedings of the
1992 ACM conference on Computer-supported cooperative work (CSCW ’92). Association for Computing Machinery,
Toronto, Ontario, Canada, 107–114. https://doi.org/10.1145/143457.143468

[38] Thomas Erickson and Wendy A. Kellogg. 2000. Social translucence: an approach to designing systems that support
social processes. ACM Transactions on Computer-Human Interaction 7, 1 (March 2000), 59–83. https://doi.org/10.
1145/344949.345004

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

https://doi.org/10.2466/pr0.2003.93.1.191
https://doi.org/10.1109/52.62928
https://doi.org/10.1109/52.62928
https://doi.org/10.1007/s00163-007-0028-8
https://doi.org/10.1016/j.rcim.2007.07.010
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1016/S1389-1286(00)00047-5
https://doi.org/10.1145/166117.166126
https://doi.org/10.1145/166117.166126
https://doi.org/10.1002/asi.10286
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/3379337.3415865
https://doi.org/10.1145/3301275.3302321
https://doi.org/10.1145/3301275.3302321
https://doi.org/10.1145/3025453.3025972
https://doi.org/10.1037/10096-006
https://dialnet.unirioja.es/servlet/articulo?codigo=2514140
https://doi.org/10.1145/1101779.1101804
https://doi.org/10.1145/143457.143468
https://doi.org/10.1145/344949.345004
https://doi.org/10.1145/344949.345004

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:31

[39] Gunther Eysenbach and Christian Köhler. 2002. How do consumers search for and appraise health information on
the world wide web? Qualitative study using focus groups, usability tests, and in-depth interviews. BMJ (Clinical
research ed.) 324, 7337 (March 2002), 573–577. https://doi.org/10.1136/bmj.324.7337.573

[40] Facebook. 2018. React - A JavaScript library for building user interfaces. https://reactjs.org/
[41] Kristie Fisher, Scott Counts, and Aniket Kittur. 2012. Distributed Sensemaking: Improving Sensemaking by Leveraging

the Eorts of Previous Users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’12). ACM, New York, NY, USA, 247–256. https://doi.org/10.1145/2207676.2207711

[42] Andrew J. Flanagin and Miriam J. Metzger. 2000. Perceptions of Internet Information Credibility. Journalism & Mass
Communication Quarterly 77, 3 (Sept. 2000), 515–540. https://doi.org/10.1177/107769900007700304 Publisher: SAGE
Publications Inc.

[43] B. J. Fogg. 2002. Persuasive technology: using computers to change what we think and do. Ubiquity 2002, December
(Dec. 2002), 5:2. https://doi.org/10.1145/764008.763957

[44] B. J. Fogg and Hsiang Tseng. 1999. The elements of computer credibility. In Proceedings of the SIGCHI conference on
Human Factors in Computing Systems (CHI ’99). Association for Computing Machinery, Pittsburgh, Pennsylvania,
USA, 80–87. https://doi.org/10.1145/302979.303001

[45] Adam Fourney and Meredith Ringel Morris. 2013. Enhancing Technical Q&A Forums with CiteHistory. In Seventh
International AAAI Conference on Weblogs and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/
paper/view/6082

[46] William Frakes and Carol Terry. 1996. Software reuse: metrics and models. Comput. Surveys 28, 2 (June 1996), 415–435.
https://doi.org/10.1145/234528.234531

[47] W B Frakes and B A Nejmeh. 1986. Software reuse through information retrieval. ACM SIGIR Forum 21, 1-2 (Sept.
1986), 30–36. https://doi.org/10.1145/24634.24636

[48] John W. Fritch and Robert L. Cromwell. 2001. Evaluating Internet resources: Identity, aliation, and cognitive
authority in a networked world. Journal of the American Society for Information Science and Technology 52, 6 (2001),
499–507. https://doi.org/10.1002/asi.1081 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.1081.

[49] Andreas Gizas, Sotiris Christodoulou, and Theodore Papatheodorou. 2012. Comparative Evaluation of Javascript
Frameworks. In Proceedings of the 21st International Conference on World Wide Web (WWW ’12 Companion). ACM,
New York, NY, USA, 513–514. https://doi.org/10.1145/2187980.2188103

[50] Stefan Haeiger, Georg von Krogh, and Sebastian Spaeth. 2007. Code Reuse in Open Source Software. Management
Science 54, 1 (Nov. 2007), 180–193. https://doi.org/10.1287/mnsc.1070.0748 Publisher: INFORMS.

[51] Nathan Hahn, Joseph Chang, Ji Eun Kim, and Aniket Kittur. 2016. The Knowledge Accelerator: Big Picture Thinking
in Small Pieces. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM,
New York, NY, USA, 2258–2270. https://doi.org/10.1145/2858036.2858364

[52] Nathan Hahn, Joseph Chee Chang, and Aniket Kittur. 2018. Bento Browser: Complex Mobile Search Without Tabs.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM, Montreal QC,
Canada, 251:1–251:12. https://doi.org/10.1145/3173574.3173825

[53] Udo Hahn and Ulrich Reimer. 1999. Knowledge-based text summarization: Salience and generalization operators
for knowledge base abstraction. Advances in automatic text summarization (1999), 215–232. Publisher: MIT Press,
Cambridge, Mass.

[54] Tom-Michael Hesse, Veronika Lerche, Marcus Seiler, Konstantin Knoess, and Barbara Paech. 2016. Documented
decision-making strategies and decision knowledge in open source projects: An empirical study on Firefox issue
reports. Information and Software Technology 79 (Nov. 2016), 36–51. https://doi.org/10.1016/j.infsof.2016.06.003

[55] Johan F. Hoorn and Teunis D. van Wijngaarden. 2010. Web Intelligence for the Assessment of Information Quality:
Credibility, Correctness, and Readability. Web Intelligence and Intelligent Agents (March 2010). https://doi.org/10.
5772/8372 Publisher: IntechOpen.

[56] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems (CHI ’99). Association for Computing Machinery, New York, NY, USA, 159–166.
https://doi.org/10.1145/302979.303030

[57] Jane Hsieh, Michael Xieyang Liu, Brad A. Myers, and Aniket Kittur. 2018. An Exploratory Study of Web Foraging to
Understand and Support Programming Decisions. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 305–306. https://doi.org/10.1109/VLHCC.2018.8506517 ISSN: 1943-6092.

[58] Donghan Hu and Sang Won Lee. 2020. ScreenTrack: Using a Visual History of a Computer Screen to Retrieve
Documents and Web Pages. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI
’20). Association for Computing Machinery, Honolulu, HI, USA, 1–13. https://doi.org/10.1145/3313831.3376753

[59] Robert F. Hurley and G. Tomas M. Hult. 1998. Innovation, Market Orientation, and Organizational Learning: An
Integration and Empirical Examination. Journal of Marketing 62, 3 (July 1998), 42–54. https://doi.org/10.1177/
002224299806200303 Publisher: SAGE Publications Inc.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

https://doi.org/10.1136/bmj.324.7337.573
https://reactjs.org/
https://doi.org/10.1145/2207676.2207711
https://doi.org/10.1177/107769900007700304
https://doi.org/10.1145/764008.763957
https://doi.org/10.1145/302979.303001
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6082
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6082
https://doi.org/10.1145/234528.234531
https://doi.org/10.1145/24634.24636
https://doi.org/10.1002/asi.1081
https://doi.org/10.1145/2187980.2188103
https://doi.org/10.1287/mnsc.1070.0748
https://doi.org/10.1145/2858036.2858364
https://doi.org/10.1145/3173574.3173825
https://doi.org/10.1016/j.infsof.2016.06.003
https://doi.org/10.5772/8372
https://doi.org/10.5772/8372
https://doi.org/10.1145/302979.303030
https://doi.org/10.1109/VLHCC.2018.8506517
https://doi.org/10.1145/3313831.3376753
https://doi.org/10.1177/002224299806200303
https://doi.org/10.1177/002224299806200303

166:32 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

[60] Haojian Jin, Swarun Kumar, and Jason Hong. 2020. Providing architectural support for building privacy-sensitive smart
home applications. In Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers (UbiComp-ISWC ’20).
Association for Computing Machinery, New York, NY, USA, 212–217. https://doi.org/10.1145/3410530.3414328

[61] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava, Matthew Fredrikson, Yuvraj Agarwal, and
Jason I. Hong. 2018. Why Are They Collecting My Data? Inferring the Purposes of Network Trac in Mobile Apps.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 4 (Dec. 2018), 173:1–173:27.
https://doi.org/10.1145/3287051

[62] Haojian Jin, Tetsuya Sakai, and Koji Yatani. 2014. ReviewCollage: a mobile interface for direct comparison using
online reviews. In Proceedings of the 16th international conference on Human-computer interaction with mobile devices
& services (MobileHCI ’14). Association for Computing Machinery, New York, NY, USA, 349–358. https://doi.org/10.
1145/2628363.2628373

[63] Aniket Kittur, AndrewM. Peters, Abdigani Diriye, andMichael Bove. 2014. Standing on the Schemas of Giants: Socially
Augmented Information Foraging. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative
Work & Social Computing (CSCW ’14). ACM, New York, NY, USA, 999–1010. https://doi.org/10.1145/2531602.2531644

[64] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael R. Bove. 2013. Costs and Benets of
Structured Information Foraging. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 2989–2998. https://doi.org/10.1145/2470654.2481415

[65] Aniket Kittur, Bongwon Suh, and Ed H. Chi. 2008. Can you ever trust a wiki? impacting perceived trustworthiness in
wikipedia. In Proceedings of the 2008 ACM conference on Computer supported cooperative work (CSCW ’08). Association
for Computing Machinery, San Diego, CA, USA, 477–480. https://doi.org/10.1145/1460563.1460639

[66] Amy J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams.
In 29th International Conference on Software Engineering (ICSE’07). IEEE, 344–353.

[67] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in End-User Programming Systems. In
Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing (VLHCC ’04). IEEE Computer
Society, Washington, DC, USA, 199–206. https://doi.org/10.1109/VLHCC.2004.47

[68] Professor of Management and Director at the Institute of Management Georg Von Krogh, Georg von Krogh, Associate
Professor in the Faculty of Social Sciences and the Graduate School of International Corporate Strategy Kazuo Ichijo,
Kazuo Ichijo, Ikujiro Nonaka, and Professor of Graduate School of International Corporate Strategy at Hitotsubashi
University and the Xerox Distinguished Professor in Knowledge at Hass School of Business Ikujiro Nonaka. 2000.
Enabling Knowledge Creation: How to Unlock the Mystery of Tacit Knowledge and Release the Power of Innovation.
Oxford University Press, USA. Google-Books-ID: JVESDAAAQBAJ.

[69] Charles W. Krueger. 1992. Software reuse. Comput. Surveys 24, 2 (June 1992), 131–183. https://doi.org/10.1145/
130844.130856

[70] Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer Questions About Code. In Evaluation and Usability
of Programming Languages and Tools (PLATEAU ’10). ACM, New York, NY, USA, 8:1–8:6. https://doi.org/10.1145/
1937117.1937125

[71] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental Models: A Study of Developer Work
Habits. In Proceedings of the 28th International Conference on Software Engineering (ICSE ’06). ACM, New York, NY,
USA, 492–501. https://doi.org/10.1145/1134285.1134355

[72] John Lawrence, Jonas Malmsten, Andrey Rybka, Daniel Sabol, and Ken Triplin. 2017. Comparing TensorFlow
Deep Learning Performance Using CPUs, GPUs, Local PCs and Cloud. Publications and Research (May 2017).
https://academicworks.cuny.edu/bx_pubs/50

[73] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating Multimodal Smartphone Automation
by Demonstration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17).
Association for Computing Machinery, Denver, Colorado, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483

[74] Toby Jia-Jun Li, Jingya Chen, Brandon Caneld, and Brad A. Myers. 2020. Privacy-Preserving Script Sharing in
GUI-based Programming-by-Demonstration Systems. Proceedings of the ACM on Human-Computer Interaction 4,
CSCW1 (May 2020), 060:1–060:23. https://doi.org/10.1145/3392869

[75] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers. 2020. Multi-Modal Repairs of
Conversational Breakdowns in Task-Oriented Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology (UIST ’20). Association for Computing Machinery, New York, NY, USA, 1094–1107.
https://doi.org/10.1145/3379337.3415820

[76] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, Wanling Ding, Tom M. Mitchell, and
Brad A. Myers. 2018. APPINITE: A Multi-Modal Interface for Specifying Data Descriptions in Programming by
Demonstration Using Natural Language Instructions. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 105–114. https://doi.org/10.1109/VLHCC.2018.8506506 ISSN: 1943-6106.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

https://doi.org/10.1145/3410530.3414328
https://doi.org/10.1145/3287051
https://doi.org/10.1145/2628363.2628373
https://doi.org/10.1145/2628363.2628373
https://doi.org/10.1145/2531602.2531644
https://doi.org/10.1145/2470654.2481415
https://doi.org/10.1145/1460563.1460639
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1134285.1134355
https://academicworks.cuny.edu/bx_pubs/50
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3392869
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1109/VLHCC.2018.8506506

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:33

[77] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomM.Mitchell, and Brad A.Myers. 2019. PUMICE: A
Multi-Modal Agent that Learns Concepts and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19). Association for Computing
Machinery, New Orleans, LA, USA, 577–589. https://doi.org/10.1145/3332165.3347899

[78] Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational Bots from Mobile Apps. In Proceedings of the
16th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys ’18). Association for
Computing Machinery, Munich, Germany, 96–109. https://doi.org/10.1145/3210240.3210339

[79] Brian Y. Lim and Anind K. Dey. 2009. Assessing demand for intelligibility in context-aware applications. In Proceedings
of the 11th international conference on Ubiquitous computing (UbiComp ’09). Association for Computing Machinery,
Orlando, Florida, USA, 195–204. https://doi.org/10.1145/1620545.1620576

[80] Brian Y. Lim and Anind K. Dey. 2010. Toolkit to support intelligibility in context-aware applications. In Proceedings of
the 12th ACM international conference on Ubiquitous computing (UbiComp ’10). Association for Computing Machinery,
Copenhagen, Denmark, 13–22. https://doi.org/10.1145/1864349.1864353

[81] Michael Xieyang Liu, Shaun Burley, Emily Deng, Angelina Zhou, Aniket Kittur, and Brad A. Myers. 2018. Supporting
Knowledge Acceleration for Programming from a Sensemaking Perspective. Sensemaking Workshop at CHI Conference
on Human Factors in Computing Systems (April 2018). https://par.nsf.gov/biblio/10152063-supporting-knowledge-
acceleration-programming-from-sensemaking-perspective

[82] Michael Xieyang Liu, Nathan Hahn, Angelina Zhou, Shaun Burley, Emily Deng, Aniket Kittur, and Brad A. Myers.
2018. UNAKITE: Support Developers for Capturing and Persisting Design Rationales When Solving Problems Using
Web Resources. Workshop on Designing Technologies to Support Human Problem Solving at the IEEE Symposium on
Visual Languages and Human-Centric Computing (Oct. 2018). https://par.nsf.gov/biblio/10152060-unakite-support-
developers-capturing-persisting-design-rationales-when-solving-problems-using-web-resources

[83] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng, Shaun Burley, Cynthia Taylor, Aniket
Kittur, and Brad A. Myers. 2019. Unakite: Scaolding Developers’ Decision-Making Using the Web. In Proceedings of
the 32Nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19). ACM, New Orleans, LA, USA,
67–80. https://doi.org/10.1145/3332165.3347908 event-place: New Orleans, LA, USA.

[84] Ann Majchrzak, Lynne P. Cooper, and Olivia E. Neece. 2004. Knowledge Reuse for Innovation. Management Science
50, 2 (Feb. 2004), 174–188. https://doi.org/10.1287/mnsc.1030.0116 Publisher: INFORMS.

[85] Lynne M. Markus. 2001. Toward a Theory of Knowledge Reuse: Types of Knowledge Reuse Situations and Factors
in Reuse Success. Journal of Management Information Systems 18, 1 (May 2001), 57–93. https://doi.org/10.1080/
07421222.2001.11045671 Publisher: Routledge _eprint: https://doi.org/10.1080/07421222.2001.11045671.

[86] Marc Meola. 2004. Chucking the Checklist: A Contextual Approach to Teaching Undergraduates Web-Site Evaluation.
portal: Libraries and the Academy 4, 3 (July 2004), 331–344. https://doi.org/10.1353/pla.2004.0055 Publisher: Johns
Hopkins University Press.

[87] Miriam J. Metzger. 2007. Making sense of credibility on the Web: Models for evaluating online information and
recommendations for future research. Journal of the American Society for Information Science and Technology 58, 13
(2007), 2078–2091. https://doi.org/10.1002/asi.20672

[88] Miriam J. Metzger, Andrew J. Flanagin, Keren Eyal, Daisy R. Lemus, and Robert M. Mccann. 2003. Credibility for
the 21st Century: Integrating Perspectives on Source, Message, and Media Credibility in the Contemporary Media
Environment. Annals of the International Communication Association 27, 1 (Jan. 2003), 293–335. https://doi.org/10.
1080/23808985.2003.11679029 Publisher: Routledge _eprint: https://doi.org/10.1080/23808985.2003.11679029.

[89] Miriam J. Metzger, Andrew J. Flanagin, and Ryan B. Medders. 2010. Social and Heuristic Approaches to Credibility
Evaluation Online. Journal of Communication 60, 3 (2010), 413–439. https://doi.org/10.1111/j.1460-2466.2010.01488.x

[90] Audris Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In First International Workshop on Emerging
Trends in FLOSS Research and Development (FLOSS’07: ICSE Workshops 2007). 7–7. https://doi.org/10.1109/FLOSS.2007.
10

[91] Dan Morris, Meredith Ringel Morris, and Gina Venolia. 2008. SearchBar: A Search-centric Web History for Task
Resumption and Information Re-nding. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08). ACM, New York, NY, USA, 1207–1216. https://doi.org/10.1145/1357054.1357242

[92] Meredith Ringel Morris and Eric Horvitz. 2007. SearchTogether: An Interface for Collaborative Web Search. In
Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology (UIST ’07). ACM, New York,
NY, USA, 3–12. https://doi.org/10.1145/1294211.1294215

[93] B.Myers, R.Malkin,M. Bett, A.Waibel, B. Bostwick, R.C.Miller, Jie Yang,M. Denecke, E. Seemann, Jie Zhu, ChoonHong
Peck, D. Kong, J. Nichols, and B. Scherlis. 2002. Flexi-modal and multi-machine user interfaces. In Proceedings. Fourth
IEEE International Conference on Multimodal Interfaces. 343–348. https://doi.org/10.1109/ICMI.2002.1167019

[94] Brad A. Myers, Amy J. Ko, Chris Scadi, Stephen Oney, YoungSeok Yoon, Kerry Chang, Mary Beth Kery, and Toby Jia-
Jun Li. 2017. Making End User Development More Natural. In New Perspectives in End-User Development, Fabio Paternò

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/1620545.1620576
https://doi.org/10.1145/1864349.1864353
https://par.nsf.gov/biblio/10152063-supporting-knowledge-acceleration-programming-from-sensemaking-perspective
https://par.nsf.gov/biblio/10152063-supporting-knowledge-acceleration-programming-from-sensemaking-perspective
https://par.nsf.gov/biblio/10152060-unakite-support-developers-capturing-persisting-design-rationales-when-solving-problems-using-web-resources
https://par.nsf.gov/biblio/10152060-unakite-support-developers-capturing-persisting-design-rationales-when-solving-problems-using-web-resources
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1287/mnsc.1030.0116
https://doi.org/10.1080/07421222.2001.11045671
https://doi.org/10.1080/07421222.2001.11045671
https://doi.org/10.1353/pla.2004.0055
https://doi.org/10.1002/asi.20672
https://doi.org/10.1080/23808985.2003.11679029
https://doi.org/10.1080/23808985.2003.11679029
https://doi.org/10.1111/j.1460-2466.2010.01488.x
https://doi.org/10.1109/FLOSS.2007.10
https://doi.org/10.1109/FLOSS.2007.10
https://doi.org/10.1145/1357054.1357242
https://doi.org/10.1145/1294211.1294215
https://doi.org/10.1109/ICMI.2002.1167019

166:34 Michael Xieyang Liu, Aniket Kiur, & Brad A. Myers

and Volker Wulf (Eds.). Springer International Publishing, Cham, 1–22. https://doi.org/10.1007/978-3-319-60291-2_1
[95] lkujiro Nonaka, Hirotaka Takeuchi, and Katsuhiro Umemoto. 1996. A theory of organizational knowledge creation.

International Journal of Technology Management 11, 7-8 (Jan. 1996), 833–845. https://doi.org/10.1504/IJTM.1996.025472
Publisher: Inderscience Publishers.

[96] Carla O’Dell and C. Jackson Grayson. 1998. If Only We Knew What We Know: Identication and Transfer of Internal
Best Practices:. California Management Review (April 1998). https://doi.org/10.2307/41165948 Publisher: SAGE
PublicationsSage CA: Los Angeles, CA.

[97] Stephen Oney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation and Example Code in the Editor.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). ACM, New York, NY, USA,
2697–2706. https://doi.org/10.1145/2207676.2208664

[98] Margit Osterloh and Bruno S. Frey. 2000. Motivation, Knowledge Transfer, and Organizational Forms. Organization
Science 11, 5 (Oct. 2000), 538–550. https://doi.org/10.1287/orsc.11.5.538.15204 Publisher: INFORMS.

[99] Emily S. Patterson and David D. Woods. 2001. Shift Changes, Updates, and the On-Call Architecture in Space Shuttle
Mission Control. Computer Supported Cooperative Work 10, 3-4 (Dec. 2001), 317–346. https://doi.org/10.1023/A:
1012705926828

[100] Sharoda A. Paul and Meredith Ringel Morris. 2009. CoSense: Enhancing Sensemaking for Collaborative Web Search.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA,
1771–1780. https://doi.org/10.1145/1518701.1518974

[101] Sharoda A. Paul and Meredith Ringel Morris. 2011. Sensemaking in Collaborative Web Search. Human–Computer
Interaction 26, 1-2 (March 2011), 72–122. https://doi.org/10.1080/07370024.2011.559410

[102] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack Overow in the IDE. In 2013 35th
International Conference on Software Engineering (ICSE). IEEE, San Francisco, CA, USA, 1295–1298. https://doi.org/10.
1109/ICSE.2013.6606701

[103] N. Rutar, C. B. Almazan, and J. S. Foster. 2004. A comparison of bug nding tools for Java. In 15th International
Symposium on Software Reliability Engineering. 245–256. https://doi.org/10.1109/ISSRE.2004.1

[104] Eldar Sadikov, Jayant Madhavan, Lu Wang, and Alon Halevy. 2010. Clustering query renements by user intent. In
Proceedings of the 19th international conference on World wide web (WWW ’10). Association for Computing Machinery,
Raleigh, North Carolina, USA, 841–850. https://doi.org/10.1145/1772690.1772776

[105] Tefko Saracevic. [n.d.]. Relevance reconsidered.
[106] Ann Scholz-Crane. 1998. Evaluating the Future: A Preliminary Study of the Process of How Undergraduate Students

Evaluate Web Sources. RSR: Reference Services Review 26 (1998), 53–60.
[107] Rever Score. 2017. Why we moved from Angular 2 to Vue.js (and why we didn’t choose React). https://medium.com/

reverdev/why-we-moved-from-angular-2-to-vue-js-and-why-we-didnt-choose-react-ef807d9f4163 Library Catalog:
medium.com.

[108] Mirjam Seckler, Silvia Heinz, Seamus Forde, Alexandre N. Tuch, and Klaus Opwis. 2015. Trust and distrust on
the web: User experiences and website characteristics. Computers in Human Behavior 45 (April 2015), 39–50.
https://doi.org/10.1016/j.chb.2014.11.064

[109] Nikhil Sharma. 2008. Sensemaking hando: When and how? Proceedings of the American Society for Information
Science and Technology 45, 1 (Jan. 2008), 1–12. https://doi.org/10.1002/meet.2008.1450450234

[110] Nikhil Sharma. 2011. Role of available and provided resources in sensemaking. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11). Association for Computing Machinery, Vancouver, BC, Canada,
1807–1816. https://doi.org/10.1145/1978942.1979204

[111] Nikhil Sharma and George Furnas. 2009. Artifact usefulness and usage in sensemaking handos. Proceedings of the
American Society for Information Science and Technology 46 (2009). https://doi.org/10.1002/meet.2009.1450460219

[112] B. Shneiderman. 1996. The eyes have it: a task by data type taxonomy for information visualizations. In Proceedings
1996 IEEE Symposium on Visual Languages. 336–343. https://doi.org/10.1109/VL.1996.545307 ISSN: 1049-2615.

[113] Ben Shneiderman. 2000. Designing trust into online experiences. Commun. ACM 43, 12 (Dec. 2000), 57–59. https:
//doi.org/10.1145/355112.355124

[114] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions Programmers Ask During Software Evolution
Tasks. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(SIGSOFT ’06/FSE-14). ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/1181775.1181779

[115] Manuel Sojer and Joachim Henkel. 2010. Code Reuse in Open Source Software Development: Quantitative Evidence,
Drivers, and Impediments. SSRN Scholarly Paper ID 1489789. Social Science Research Network, Rochester, NY.
https://papers.ssrn.com/abstract=1489789

[116] Bongwon Suh, Ed H. Chi, Aniket Kittur, and Bryan A. Pendleton. 2008. Lifting the veil: improving accountability
and social transparency in Wikipedia with wikidashboard. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). Association for Computing Machinery, Florence, Italy, 1037–1040. https:

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

https://doi.org/10.1007/978-3-319-60291-2_1
https://doi.org/10.1504/IJTM.1996.025472
https://doi.org/10.2307/41165948
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1287/orsc.11.5.538.15204
https://doi.org/10.1023/A:1012705926828
https://doi.org/10.1023/A:1012705926828
https://doi.org/10.1145/1518701.1518974
https://doi.org/10.1080/07370024.2011.559410
https://doi.org/10.1109/ICSE.2013.6606701
https://doi.org/10.1109/ICSE.2013.6606701
https://doi.org/10.1109/ISSRE.2004.1
https://doi.org/10.1145/1772690.1772776
https://medium.com/reverdev/why-we-moved-from-angular-2-to-vue-js-and-why-we-didnt-choose-react-ef807d9f4163
https://medium.com/reverdev/why-we-moved-from-angular-2-to-vue-js-and-why-we-didnt-choose-react-ef807d9f4163
https://doi.org/10.1016/j.chb.2014.11.064
https://doi.org/10.1002/meet.2008.1450450234
https://doi.org/10.1145/1978942.1979204
https://doi.org/10.1002/meet.2009.1450460219
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1145/355112.355124
https://doi.org/10.1145/355112.355124
https://doi.org/10.1145/1181775.1181779
https://papers.ssrn.com/abstract=1489789
https://doi.org/10.1145/1357054.1357214
https://doi.org/10.1145/1357054.1357214

To Reuse or Not To Reuse? A Framework and System for Evaluating Summarized Knowledge 166:35

//doi.org/10.1145/1357054.1357214
[117] Yi Yi Thaw, Ahmad Kamil Mahmood, and P. Dhanapal Durai Dominic. 2009. A Study on the Factors That Inuence

the Consumers Trust on Ecommerce Adoption. arXiv:0909.1145 [cs] (Sept. 2009). http://arxiv.org/abs/0909.1145 arXiv:
0909.1145.

[118] Meinald T. Thielsch and Gerrit Hirschfeld. 2019. Facets of Website Content. Human–Computer Interaction 34, 4 (July
2019), 279–327. https://doi.org/10.1080/07370024.2017.1421954

[119] Michael L Van De Vanter. 2002. The documentary structure of source code. Information and Software Technology 44,
13 (Oct. 2002), 767–782.

[120] Laton Vermette, Parmit Chilana, Michael Terry, Adam Fourney, Ben Lafreniere, and Travis Kerr. 2015. CheatSheet: A
Contextual Interactive Memory Aid for Web Applications. In Proceedings of the 41st Graphics Interface Conference (GI
’15). Canadian Information Processing Society, Toronto, Ont., Canada, Canada, 241–248. http://dl.acm.org/citation.
cfm?id=2788890.2788933 event-place: Halifax, Nova Scotia, Canada.

[121] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, Antonio Scala, Guido Caldarelli, H. Eugene
Stanley, andWalter Quattrociocchi. 2016. The spreading of misinformation online. Proceedings of the National Academy
of Sciences 113, 3 (Jan. 2016), 554–559. https://doi.org/10.1073/pnas.1517441113 Publisher: National Academy of
Sciences Section: Physical Sciences.

[122] Fernanda B. Viégas, Martin Wattenberg, and Kushal Dave. 2004. Studying cooperation and conict between authors
with history ow visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’04). Association for Computing Machinery, Vienna, Austria, 575–582. https://doi.org/10.1145/985692.985765

[123] Fernanda B. Viégas, Martin Wattenberg, and Matthew M. McKeon. 2007. The Hidden Order of Wikipedia. In Online
Communities and Social Computing (Lecture Notes in Computer Science), Douglas Schuler (Ed.). Springer, Berlin,
Heidelberg, 445–454. https://doi.org/10.1007/978-3-540-73257-0_49

[124] Ye Diana Wang and Henry H. Emurian. 2005. An overview of online trust: Concepts, elements, and implications.
Computers in Human Behavior 21, 1 (Jan. 2005), 105–125. https://doi.org/10.1016/j.chb.2003.11.008

[125] Sharon Watson and Kelly Hewett. 2006. A Multi-Theoretical Model of Knowledge Transfer in Organizations:
Determinants of Knowledge Contribution and Knowledge Reuse*. Journal of Management Studies 43, 2 (2006), 141–
173. https://doi.org/10.1111/j.1467-6486.2006.00586.x _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
6486.2006.00586.x.

[126] Zhen Yue, Shuguang Han, and Daqing He. 2012. An investigation of search processes in collaborative exploratory
web search. Proceedings of the American Society for Information Science and Technology 49, 1 (2012), 1–4. https:
//doi.org/10.1002/meet.14504901386

[127] Honglei Zeng, Maher A. Alhossaini, Li Ding, Richard Fikes, and Deborah L. McGuinness. 2006. Computing trust
from revision history. In Proceedings of the 2006 International Conference on Privacy, Security and Trust: Bridge the Gap
Between PST Technologies and Business Services (PST ’06). Association for Computing Machinery, Markham, Ontario,
Canada, 1. https://doi.org/10.1145/1501434.1501445

[128] Honglei Zeng, Maher A. Alhossaini, Richard Fikes, and Deborah L. McGuinness. 2006. Mining Revision History to
Assess Trustworthiness of Article Fragments. In 2006 International Conference on Collaborative Computing: Networking,
Applications and Worksharing. 1–10. https://doi.org/10.1109/COLCOM.2006.361890

[129] Amy X. Zhang and Justin Cranshaw. 2018. Making Sense of Group Chat Through Collaborative Tagging and
Summarization. Proc. ACMHum.-Comput. Interact. 2, CSCW (Nov. 2018), 196:1–196:27. https://doi.org/10.1145/3274465

[130] Amy X. Zhang, Lea Verou, and David Karger. 2017. Wikum: Bridging Discussion Forums and Wikis Using Recursive
Summarization. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social
Computing (CSCW ’17). ACM, New York, NY, USA, 2082–2096. https://doi.org/10.1145/2998181.2998235

[131] Jian Zhao, Michael Glueck, Petra Isenberg, Fanny Chevalier, and Azam Khan. 2018. Supporting Hando in Asyn-
chronous Collaborative Sensemaking Using Knowledge-Transfer Graphs. IEEE Transactions on Visualization and
Computer Graphics 24, 1 (Jan. 2018), 340–350. https://doi.org/10.1109/TVCG.2017.2745279 Conference Name: IEEE
Transactions on Visualization and Computer Graphics.

Received June 2020; revised October 2020; accepted December 2020

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 166. Publication date: April 2021.

https://doi.org/10.1145/1357054.1357214
https://doi.org/10.1145/1357054.1357214
http://arxiv.org/abs/0909.1145
https://doi.org/10.1080/07370024.2017.1421954
http://dl.acm.org/citation.cfm?id=2788890.2788933
http://dl.acm.org/citation.cfm?id=2788890.2788933
https://doi.org/10.1073/pnas.1517441113
https://doi.org/10.1145/985692.985765
https://doi.org/10.1007/978-3-540-73257-0_49
https://doi.org/10.1016/j.chb.2003.11.008
https://doi.org/10.1111/j.1467-6486.2006.00586.x
https://doi.org/10.1002/meet.14504901386
https://doi.org/10.1002/meet.14504901386
https://doi.org/10.1145/1501434.1501445
https://doi.org/10.1109/COLCOM.2006.361890
https://doi.org/10.1145/3274465
https://doi.org/10.1145/2998181.2998235
https://doi.org/10.1109/TVCG.2017.2745279

	Abstract
	1 Introduction
	2 Related Work
	2.1 Information and Knowledge Reuse
	2.2 Evaluating Online Information Credibility
	2.3 Sensemaking Handoff
	2.4 Knowledge Reuse in Programming

	3 Background and Formative Investigations
	3.1 The Unakite System
	3.2 Formative Interviews
	3.3 Preliminary Results

	4 Framework
	4.1 Context
	4.2 Trustworthiness
	4.3 Thoroughness
	4.4 Summary

	5 Strata Design and Implementation
	5.1 Core Design Process and Rationale
	5.2 Context
	5.3 Trustworthiness
	5.4 Thoroughness

	6 Evaluation
	6.1 Experiment Design
	6.2 Quantitative Results
	6.3 Qualitative Results

	7 Discussion
	8 Future Work
	9 Limitations and Risks
	10 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 38.83, 60.59 Width 404.66 Height 78.45 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 38.8348 60.5856 404.6583 78.4462

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 35
 0
 1

 1

 HistoryList_V1
 qi2base

